Vector-valued holomorphic and harmonic functions
Wolfgang Arendt
Concrete Operators, Tome 3 (2016), p. 68-76 / Harvested from The Polish Digital Mathematics Library

Holomorphic and harmonic functions with values in a Banach space are investigated. Following an approach given in a joint article with Nikolski [4] it is shown that for bounded functions with values in a Banach space it suffices that the composition with functionals in a separating subspace of the dual space be holomorphic to deduce holomorphy. Another result is Vitali’s convergence theorem for holomorphic functions. The main novelty in the article is to prove analogous results for harmonic functions with values in a Banach space.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:277097
@article{bwmeta1.element.doi-10_1515_conop-2016-0007,
     author = {Wolfgang Arendt},
     title = {Vector-valued holomorphic and harmonic functions},
     journal = {Concrete Operators},
     volume = {3},
     year = {2016},
     pages = {68-76},
     zbl = {1350.46031},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_conop-2016-0007}
}
Wolfgang Arendt. Vector-valued holomorphic and harmonic functions. Concrete Operators, Tome 3 (2016) pp. 68-76. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_conop-2016-0007/

[1] H. Amann: Elliptic operators with infinite-dimensional state space. J. Evol. Equ 1 (2001), 143–188. | Zbl 1018.35023

[2] W. Arendt, C. Batty, M. Hieber, F. Neubrander: Vector-valued Laplace Transforms and Cauchy Problems. Second edition. Birkhäuser Basel (2011) | Zbl 1226.34002

[3] W. Arendt, A.F.M. ter Elst: From forms to semigroups. Oper. Theory Adv. Appl. 221, 47–69. | Zbl 1272.47003

[4] W. Arendt, N. Nikolski: Vector-valued holomorphic functions revisited. Math. Z. 234 (2000), no. 4, 777–805. | Zbl 0976.46030

[5] W. Arendt, N. Nikolski: Addendum: Vector-valued holomorphic functions revisited. Math. Z. 252 (2006), 687–689.

[6] S. Axler; P. Bourdon, W. Ramey: Harmonic Function Theory. Springer, Berlin 1992. | Zbl 0765.31001

[7] J. Bonet, L. Frerick, E. Jordá: Extension of vector-valued holomorphic and harmonic functions. Studia Math. 183 (2007), 225–248. | Zbl 1141.46017

[8] J. Diestel, J.J. Uhl: Vector Measures. Amer. Math. Soc. Providence 1977.

[9] K.-G. Grosse-Erdmann: The Borel-Ohada theorem revisited. Habilitationsschrift Hagen 1992.

[10] K.-G. Grosse-Erdmann: A weak criterion for vector-valued holomorphy. Math. Proc. Cambridge Philos. Soc. 136 (2004), 399–411. | Zbl 1055.46026

[11] T. Kato: Perturbation Theory for Linear Operators. Springer, Berlin 1995. | Zbl 0836.47009

[12] M. Yu. Kokwin: Sets of Uniqueness for Harmonic and Analytic Functions and diverse Problems for Wave equations. Math. Notes. 97 (2015), 376–383.

[13] T. Ransford: Potential Theory in the Complex Plane. London Math. Soc., Cambridge University Press 1995. | Zbl 0828.31001

[14] R. Remmert: Funktionentheorie 2. Springer, Berlin 1992.

[15] A. Tonolo: Commemorazione di Giuseppe Vitali. Rendiconti Sem. Matem. Univ. Padova 3 (1932), 37–81.

[16] V. Wrobel: Analytic functions into Banach spaces and a new characterisation of isomorphic embeddings.. Proc. Amer. Math. Soc. (1982), 539–543. | Zbl 0498.30004