The Invariant Subspace Problem for Hilbert spaces is a long-standing question and the use of universal operators in the sense of Rota has been an important tool for studying such important problem. In this survey, we focus on Rota’s universal operators, pointing out their main properties and exhibiting some old and recent examples.
@article{bwmeta1.element.doi-10_1515_conop-2016-0006, author = {Carl C. Cowen and Eva A. Gallardo-Guti\'errez}, title = {An introduction to Rota's universal operators: properties, old and new examples and future issues}, journal = {Concrete Operators}, volume = {3}, year = {2016}, pages = {43-51}, zbl = {1344.47003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_conop-2016-0006} }
Carl C. Cowen; Eva A. Gallardo-Gutiérrez. An introduction to Rota’s universal operators: properties, old and new examples and future issues. Concrete Operators, Tome 3 (2016) pp. 43-51. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_conop-2016-0006/
[1] A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math. 81(1949), 239–255. | Zbl 0033.37701
[2] S. R. Caradus, Universal operators and invariant subspaces, Proc. Amer. Math. Soc. 23(1969), 526–527. | Zbl 0186.19204
[3] I. Chalendar and J. R. Partington, Modern Approaches to the Invariant Subspace Problem, Cambridge University Press, 2011. | Zbl 1231.47005
[4] C. C. Cowen, The commutant of an analytic Toeplitz operator, Trans. Amer. Math. Soc. 239(1978), 1–31. | Zbl 0391.47014
[5] C. C. Cowen, The commutant of an analytic Toeplitz operator, II, Indiana Math. J. 29(1980), 1–12. | Zbl 0408.47024
[6] C. C. Cowen, An analytic Toeplitz operator that commutes with a compact operator and a related class of Toeplitz operators, J. Functional Analysis 36(1980), 169–184. | Zbl 0438.47029
[7] C. C. Cowen and E. A. Gallardo-Gutiérrez, Unitary equivalence of one-parameter groups of Toeplitz and composition operators, J. Functional Analysis 261(2011), 2641–2655. | Zbl 1242.47022
[8] C. C. Cowen and E. A. Gallardo-Gutiérrez, Rota’s universal operators and invariant subspaces in Hilbert spaces, to appear.
[9] C. C. Cowen and E. A. Gallardo-Gutiérrez, Consequences of Universality Among Toeplitz Operators, J. Math. Anal. Appl. 432(2015), 484–503.
[10] R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972. | Zbl 0247.47001
[11] R. G. Douglas, H. S. Shapiro, and A. L. Shields, Cyclic vectors and invariant subspaces for the backward shift operator, Ann. Inst. Fourier (Grenoble) 20(1970), 37–76. | Zbl 0186.45302
[12] P. L. Duren Theory of Hp Spaces, Academic Press, New York, 1970; reprinted with supplement by Dover Publications, Mineola, N˙Y ˙ , 2000.
[13] Enflo, P., On the invariant subspace problem in Banach spaces, Acta Math. 158(1987), 213–313. | Zbl 0663.47003
[14] E. A. Gallardo-Gutiérrez and P. Gorkin, Minimal invariant subspaces for composition operators, J. Math. Pure Appl. 95(2011), 245–259. | Zbl 1213.47007
[15] D. W. Hadwin, E. A. Nordgren, H. Radjavi and P. Rosenthal, An operator not satisfying Lomonosov hypotheses, J. Functional Analysis 38(1980), 410–415. | Zbl 0451.47003
[16] K. Hoffman, Banach spaces of analytic functions, Dover Publication, Inc., 1988. | Zbl 0734.46033
[17] V. Lomonosov, On invariant subspaces of families of operators commuting with a completely continuous operator, Funkcional Anal. i Prilozen 7(1973) 55-56 (Russian).
[18] B. Sz-Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space, North-Holland Publishing Co., 1970. | Zbl 0201.45003
[19] N. K. Nikolski, Operators, Functions, and Systems: An Easy Reading, Volume 1: Hardy, Hankel and Toeplitz, Mathematical Surveys and Monographs 92, American Mathematical Society, 2002.
[20] N. K. Nikolski, Personal communication.
[21] E. A. Nordgren, P. Rosenthal, and F. S. Wintrobe, Composition operators and the invariant subspace problem, C. R. Mat. Rep. Acad. Sci. Canada, 6(1984), 279–282. | Zbl 0599.47041
[22] E. A. Nordgren, P. Rosenthal, and F. S. Wintrobe, Invertible composition operators on Hp, J. Functional Analysis 73(1987), 324– 344. | Zbl 0643.47034
[23] J. R. Partington and E. Pozzi, Universal shifts and composition operators, Oper. Matrices 5(2015), 455–467. | Zbl 1244.47007
[24] H. Radjavi and P. Rosenthal, Invariant subspaces, Springer-Verlag, New York, 1973.
[25] Read, C. J., A solution to the invariant subspace problem on the space `1, Bull. London Math. Soc. 17(1985), 305–317. | Zbl 0574.47006
[26] Read, C. J., The invariant subspace problem for a class of Banach spaces. II. Hypercyclic operators, Israel J. Math. 63(1988), 1–40. | Zbl 0782.47002
[27] G.-C. Rota, On models for linear operators, Comm. Pure Appl. Math. 13(1960), 469–472. | Zbl 0097.31604