A Fuglede-Putnam theorem modulo the Hilbert-Schmidt class for almost normal operators with finite modulus of Hilbert-Schmidt quasi-triangularity
Vasile Lauric
Concrete Operators, Tome 3 (2016), p. 8-14 / Harvested from The Polish Digital Mathematics Library

We extend the Fuglede-Putnam theorem modulo the Hilbert-Schmidt class to almost normal operators with finite Hilbert-Schmidt modulus of quasi-triangularity.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:276601
@article{bwmeta1.element.doi-10_1515_conop-2016-0002,
     author = {Vasile Lauric},
     title = {A Fuglede-Putnam theorem modulo the Hilbert-Schmidt class for almost normal operators with finite modulus of Hilbert-Schmidt quasi-triangularity},
     journal = {Concrete Operators},
     volume = {3},
     year = {2016},
     pages = {8-14},
     zbl = {1338.47017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_conop-2016-0002}
}
Vasile Lauric. A Fuglede-Putnam theorem modulo the Hilbert-Schmidt class for almost normal operators with finite modulus of Hilbert-Schmidt quasi-triangularity. Concrete Operators, Tome 3 (2016) pp. 8-14. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_conop-2016-0002/

[1] A. Abdessemed and E. B. Davies, Some commutator estimates in the Schatten classes, J. London Math. Soc. (2), 41, 1989, 299-308 | Zbl 0692.47009

[2] T. Furuta, An extension of the Fuglede-Putnam theorem to subnormal operators using a Hilbert-Schmidt norm inequality, Proc. Amer. Math. Soc., 81, 1981, 240–242 | Zbl 0458.47020

[3] D. Hadwin and E. Nordgren, Extensions of the Berger-Shaw theorem, Proc. Amer. Math. Soc., 102, 1988, 517–525 | Zbl 0659.47026

[4] E. Kissin, D. Potapov, V. Shulman and F. Sukochev, Operator smoothness in Schatten norms for functions of several variables: Lipschitz conditions, differentiability and unbounded derivations, Proc. London Math. Soc. (4), 105, 2012, 661–702 | Zbl 1258.47022

[5] F. Kittaneh, On generalized Fuglede-Putnam theorems of Hilbert-Schmidt type, Proc. Amer. Math. Soc., 88, 1983, 293–298 | Zbl 0521.47014

[6] F. Kittaneh, On Lipschitz functions of normal operators, Proc. Amer. Math. Soc., 94, 1985, 416–418 | Zbl 0549.47006

[7] T. Nakazi, Complete spectral area estimates and self-commutators, Michigan Math. J., 35, 1988, 435–441 | Zbl 0675.47013

[8] V. Shulman, Some remarks on the Fuglede-Weiss theorem, Bull. London Math. Soc. (4), 28, 1996, 385-392 | Zbl 0892.47007

[9] V. Shulman and L. Turowska, Operator Synthesis II. Individual synthesis and linear operator equations, J. für die reine und angewandte Math. (590), 2006, 2006, 143–187 | Zbl 1094.47054

[10] D. Voiculescu, Some extensions of quasitriangularity, Rev. Roumaine Math. Pures Appl., 18, 1973, 1303–1320 | Zbl 0273.47009

[11] D. Voiculescu, Some results on norm-ideal perturbation of Hilbert space operators, J. Operator Theory, 2, 1979, 3–37 | Zbl 0446.47003

[12] D. Voiculescu, Some results on norm-ideal perturbation of Hilbert space operators II, J. Operator Theory, 5, 1981, 77–100 | Zbl 0483.46036

[13] D. Voiculescu, A note on quasitriangularity and trace-class self-commutators, Acta Sci. Math. (Szeged), 42, 1980, 195–199 | Zbl 0441.47022

[14] D. Voiculescu, Remarks on Hilbert-Schmidt perturbations of almost normal operators, Topics in Modern Operator Theory; Operator Theory: Advances and Applications-Birkhäuser, 2, 1981, 311–318

[15] D. Voiculescu, Almost Normal Operators mod Hilbert-Schmidt and the K-theory of the Algebras EΛ(Ω), arXiv:1112.4930v2 | Zbl 1325.46074

[16] D. Voiculescu, Hilbert space operators modulo normed ideals, Proc. Int. Congress Math., 1983, 1041–1047

[17] G. Weiss, The Fuglede commutativity theorem modulo operator ideals, Proc. Amer. math. Soc., 83, 1981, 113–118 | Zbl 0478.47004

[18] G. Weiss, Fuglede’s commutativity theorem modulo the Hilbert-Schmidt class and generating functions for matrix operators. II, J. Operator Theory, 5, 1981, 3–16