Absolutely Summing Terraced Matrices
Ibrahim Almasri
Concrete Operators, Tome 3 (2016), p. 1-7 / Harvested from The Polish Digital Mathematics Library

Let α > 0. By Cα we mean the terraced matrix defined by [...] if 1 ≤ k ≤ n and 0 if k > n. In this paper, we show that a necessary and sufficient condition for the induced operator on lp, to be p-summing, is α > 1; 1 ≤ p < ∞. When the more general terraced matrix B, defined by bnk = βn if 1 ≤ k ≤ n and 0 if k > n, is considered, the necessary and sufficient condition turns out to be [...] in the region 1/p + 1/q ≤ 1.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:276535
@article{bwmeta1.element.doi-10_1515_conop-2016-0001,
     author = {Ibrahim Almasri},
     title = {Absolutely Summing Terraced Matrices},
     journal = {Concrete Operators},
     volume = {3},
     year = {2016},
     pages = {1-7},
     zbl = {1338.47028},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_conop-2016-0001}
}
Ibrahim Almasri. Absolutely Summing Terraced Matrices. Concrete Operators, Tome 3 (2016) pp. 1-7. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_conop-2016-0001/

[1] G. Bennett, Some Elementary Inequalities, Quart. J. Math. Oxford (2), 38 (1987), 401-425. | Zbl 0649.26013

[2] G Bennett, Some Ideas of Operators on Hilbert Space, Studia Mathematica, T. LV. (1976), 27-39. | Zbl 0338.47013

[3] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge University Press, 1995. | Zbl 0855.47016

[4] J. Fridy, Abel Transformation into l1, Cand. Math. Bull., vol. 25(4), 1982, 421-427. | Zbl 0437.40006

[5] G. Jameson, Summing and Nuclear Norms in Banach Space Theory, Cambridge University Press, 1987. | Zbl 0634.46007

[6] S. Kwapien, A remark on p-absolutely summing operators in lrspaces, Studia Math., 34 ( 1970), 109-111. | Zbl 0189.43601

[7] A Pietsch, Absolute p-summierende Abbildungen in normierten Räumen, Studia Math. 28 (1967), 333-353. | Zbl 0156.37903

[8] H. Rhaly, p-Cesaro Matrices, Houston Journal of Mathematics, vol. 15, no. 1, 1989, 137-146. | Zbl 0691.47026