The Rate of Convergence for Linear Shape-Preserving Algorithms
Dmitry Boytsov ; Sergei Sidorov
Concrete Operators, Tome 2 (2015), / Harvested from The Polish Digital Mathematics Library

We prove some results which give explicit methods for determining an upper bound for the rate of approximation by means of operators preserving a cone. Thenwe obtain some quantitative results on the rate of convergence for some sequences of linear shape-preserving operators.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:275975
@article{bwmeta1.element.doi-10_1515_conop-2015-0008,
     author = {Dmitry Boytsov and Sergei Sidorov},
     title = {The Rate of Convergence for Linear Shape-Preserving Algorithms},
     journal = {Concrete Operators},
     volume = {2},
     year = {2015},
     zbl = {1331.41033},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_conop-2015-0008}
}
Dmitry Boytsov; Sergei Sidorov. The Rate of Convergence for Linear Shape-Preserving Algorithms. Concrete Operators, Tome 2 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_conop-2015-0008/

[1] Barnabas B., Coroianu L., Gal Sorin G., Approximation and shape preserving properties of the Bernstein operator of maxproduct kind, Int. J. of Math. and Math., 2009, Article ID 590589, 1–26 | Zbl 1188.41016

[2] Boytsov D. I., Sidorov S. P., Linear approximation method preserving k-monotonicity, Siberian electronic mathematical reports, 2015, 12, 21–27

[3] Cárdenas-Morales D., Garrancho P., Rasa I., Bernstein-type operators which preserve polynomials, Comput. Math. Appl., 2011, 62, 158–163 [WoS] | Zbl 1228.41019

[4] Cárdenas-Morales D., Muñoz-Delgado F. J., Improving certain Bernstein-type approximation processes, Mathematics and Computers in Simulation, 2008, 77, 170–178 | Zbl 1142.41302

[5] Cárdenas-Morales D., Muñoz-Delgado F. J., Garrancho P., Shape preserving approximation by Bernstein-type operators which fix polynomials, Applied Mathematics and Computation, 2006, 182, 1615–1622 | Zbl 1136.65018

[6] Floater M. S., On the convergence of derivatives of Bernstein approximation, J. Approx. Theory, 2005, 134, 130–135 [Crossref] | Zbl 1068.41010

[7] Gal Sorin G., Shape-Preserving Approximation by Real and Complex Polynomials, Springer, 2008 | Zbl 1154.41002

[8] Gonska H. H., Quantitative Korovkin type theorems on simultaneous approximation, Mathematische Zeitschrift, 1984, 186 (3), 419–433 | Zbl 0523.41013

[9] Knoop H.-B., Pottinger P., Ein satz vom Korovkin-typ fur Ck raume, Math. Z., 1976, 148, 23–32 | Zbl 0322.41016

[10] Kopotun K. A., Leviatan D., Prymak A., Shevchuk I. A., Uniform and pointwise shape preserving approximation by algebraic polynomials, Surveys in Approximation Theory, 2011, 6, 24–74 | Zbl 1296.41001

[11] Kopotun K., Shadrin A., On k-monotone approximation by free knot splines, SIAM J. Math. Anal., 2003, 34, 901–924 | Zbl 1031.41007

[12] Korovkin P. P., On the order of approximation of functions by linear positive operators, Dokl. Akad. Nauk SSSR, 1957, 114 (6), 1158–1161 (in Russian) | Zbl 0084.06104

[13] Kvasov B. I., Methods of shape preserving spline approximation, Singapore: World Scientific Publ. Co. Pte. Ltd., 2000 | Zbl 0960.41001

[14] Muñoz-Delgado F. J., Cárdenas-Morales D., Almost convexity and quantitative Korovkin type results, Appl.Math. Lett., 1998, 94 (4), 105–108 [Crossref] | Zbl 0942.41013

[15] Muñoz-Delgado F. J., Ramírez-González V., Cárdenas-Morales D., Qualitative Korovkin-type results on conservative approximation, J. Approx. Theory, 1998, 94, 144–159 | Zbl 0911.41015

[16] Pál J., Approksimation of konvekse funktioner ved konvekse polynomier, Mat. Tidsskrift, 1925, B, 60–65 | Zbl 51.0210.02

[17] Popoviciu T., About the Best Polynomial Approximation of Continuous Functions. Mathematical Monography. Sect. Mat. Univ. Cluj., 1937, fasc. III, (in Romanian) | Zbl 63.0959.03

[18] Pˇaltˇanea R., A generalization of Kantorovich operators and a shape-preserving property of Bernstein operators, Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics, 2012, 5 (54), 65–68

[19] Shisha O., Mond B., The degree of convergence of linear positive operators, Proc. Nat. Acad. Sci. U.S.A., 1968, 60, 1196– 1200 | Zbl 0164.07102

[20] Sidorov S. P., Negative property of shape preserving finite-dimensional linear operators, Appl.Math. Lett., 2003, 16 (2), 257– 261 [Crossref] | Zbl 1062.41018

[21] Sidorov S. P., Linear relative n-widths for linear operators preserving an intersection of cones, Int. J. of Math. and Math., 2014, Article ID 409219, 1–7 | Zbl 1310.41013

[22] Sidorov S.P., On the order of approximation by linear shape-preserving operators of finite rank, East Journal on Approximations, 2001, 7 (1), 1–8 | Zbl 1085.41508