Essential spectra of weighted composition operators with hyperbolic symbols
Olli Hyvärinen ; Ilmari Nieminen
Concrete Operators, Tome 2 (2015), / Harvested from The Polish Digital Mathematics Library

In this paperwe study both the spectra and the essential spectra ofweighted composition operators on Hardy spaces Hp(ⅅ), standard weighted Bergman spaces Apα(ⅅ) and weighted H∞1-type spaces when the symbols are of hyperbolic type

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:271776
@article{bwmeta1.element.doi-10_1515_conop-2015-0006,
     author = {Olli Hyv\"arinen and Ilmari Nieminen},
     title = {Essential spectra of weighted composition operators with hyperbolic symbols},
     journal = {Concrete Operators},
     volume = {2},
     year = {2015},
     zbl = {1321.47061},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_conop-2015-0006}
}
Olli Hyvärinen; Ilmari Nieminen. Essential spectra of weighted composition operators with hyperbolic symbols. Concrete Operators, Tome 2 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_conop-2015-0006/

[1] Y.A. Abramovich, C.D. Aliprantis, An invitation to operator theory, Graduate Studies inMathematics, Vol. 50, AmericanMathematical Society, Rhode Island, 2002.

[2] K. Bierstedt, W. Summers, Biduals of weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 54 (1993), 70–79. | Zbl 0801.46021

[3] J. Bonet, P. Domanski, M. Lindström, Weakly compact composition operators on analytic vector-valued function spaces, Ann. Acad. Sci. Fenn. Math. 26 (2001), 233–248. | Zbl 1075.47506

[4] P. Bourdon, Spectra of some composition operators and associated weighted composition operators, J. Operator Theory 67 (2012), 537–560. | Zbl 1262.47036

[5] P. Bourdon, Spectra of composition operators with symbols in S(2), arXiv:1401.2680 [math.FA] | Zbl 04.0324.01

[6] C. Cowen, Composition operators on H2, J. Operator Theory 9 (1983), 77–106. | Zbl 0504.47032

[7] C. Cowen, B. MacCluer, Composition operators on spaces of analytic functions, CRC Press, Boca Raton, 1995. | Zbl 0873.47017

[8] C. Cowen, E. Ko, D. Thompson, F. Tian, Spectra of some weighted composition operators on H2, arXiv:1405.5173 [math.FA]

[9] P. Domanski, M. Lindström, Sets of interpolation and sampling for weighted Banach spaces of holomorphic functions, Ann. Polon. Math. 79 (2002), 233–264. | Zbl 1060.30045

[10] P.L. Duren, Theory of Hp spaces, Academic Press, 1970. | Zbl 0215.20203

[11] P.L. Duren, A. Schuster, Bergman spaces,Mathematical Surveys and Monographs Vol. 100, AmericanMathematical Society, 2004.

[12] G. Gunatillake, Invertible weighted composition operators, J. Funct. Anal. 261 (2011), 831–860. | Zbl 1218.47037

[13] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman spaces, Springer, 2000. | Zbl 0955.32003

[14] O. Hyvärinen, M. Lindström, I. Nieminen, E. Saukko, Spectra of weighted composition operators with automorphic symbols, J. Funct. Anal. 265 (2013), 1749–1777. | Zbl 1325.47054

[15] H. Kamowitz, The spectra of a class of operators on the disc algebra, Indiana Univ. Math. J. 27 (1978), 581–610. | Zbl 0385.47016

[16] M. Möller, On the essential spectrum of a class of operators in Hilbert space, Math. Nachr. 194 (1998), 185–196. | Zbl 0919.47004

[17] V. Müller, Spectral theory of linear operators, Birkhäuser, 2003. | Zbl 1017.47001

[18] J.H. Shapiro, Composition operators and classical function theory, Springer, 1993. | Zbl 0791.30033