Let MX,w(ℝ) denote the algebra of the Fourier multipliers on a separable weighted Banach function space X(ℝ,w).We prove that if the Cauchy singular integral operator S is bounded on X(ℝ, w), thenMX,w(ℝ) is continuously embedded into L∞(ℝ). An important consequence of the continuous embedding MX,w(ℝ) ⊂ L∞(ℝ) is that MX,w(ℝ) is a Banach algebra.
@article{bwmeta1.element.doi-10_1515_conop-2015-0001, author = {Alexei Karlovich}, title = {Banach algebra of the Fourier multipliers on weighted Banach function spaces}, journal = {Concrete Operators}, volume = {2}, year = {2015}, zbl = {1332.46040}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_conop-2015-0001} }
Alexei Karlovich. Banach algebra of the Fourier multipliers on weighted Banach function spaces. Concrete Operators, Tome 2 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_conop-2015-0001/
[1] Bennett C., Sharpley R., Interpolation of Operators. Pure and Applied Mathematics, 129. Academic Press, Boston, 1988. DOI: 10.1016/S0079-8169(08)60845-4 [Crossref] | Zbl 0647.46057
[2] Berezhnoi E.I., Two-weighted estimations for the Hardy-Littlewood maximal function in ideal Banach spaces. Proc. Amer. Math. Soc. 127, 1999, 79-87. DOI: 10.1090/S0002-9939-99-04998-9 [Crossref] | Zbl 0918.42011
[3] Berkson E., Gillespie T.A., Multipliers for weighted Lp-spaces, transference, and the q-variation of functions. Bull. Sci. Math., 1998, 122, 427–454. DOI: 10.1016/S0007-4497(98)80002-X [Crossref] | Zbl 0935.42005
[4] Böttcher A., Karlovich Yu. I., Carleson Curves, Muckenhoupt Weights, and Toeplitz Operators. Progress in Mathematics (Boston, Mass.) 154. Birkhäuser, Basel, 1997. DOI: 10.1007/978-3-0348-8922-3 [Crossref] | Zbl 0889.47001
[5] Böttcher A., Karlovich Yu.I., Spitkovsky I.M., Convolution Operators and Factorization of Almost Periodic Matrix Functions. Operator Theory: Advances and Applications, 131. Birkhäuser, Basel, 2002. DOI: 10.1007/978-3-0348-8152-4 [Crossref] | Zbl 1011.47001
[6] Böttcher A., Silbermann B., Analysis of Toeplitz Operators. 2nd edn. Springer, Berlin, 2006. DOI: 10.1007/3-540-32436-4 [Crossref] | Zbl 1098.47002
[7] Cruz-Uribe D., Diening L., Hästö P., Themaximal operator on weighted variable Lebesgue spaces. Frac. Calc. Appl. Anal., 14, 2011, 361–374. DOI: 10.2478/s13540-011-0023-7 [Crossref] | Zbl 1273.42018
[8] Cruz-Uribe D., Fiorenza A., Variable Lebesgue Spaces. Birkhäuser, Basel, 2013. DOI: 10.1007/978-3-0348-0548-3 [Crossref] | Zbl 1268.46002
[9] Cruz-Uribe D., Fiorenza A., Neugebauer C.J., Weighted norm inequalities for the maximal operator on variable Lebesgue spaces. J. Math. Anal. Appl., 2012, 394, 744–760. DOI: 10.1016/j.jmaa.2012.04.044 [Crossref] | Zbl 1298.42021
[10] Curbera G.P., García-Cuerva J., Martell J.M., Pérez C., Extrapolation with weights, rearrangement-invariant function spaces, modular inequalities and applications to singular integrals. Adv. Math. 203, 2006, 256–318. DOI: 10.1016/j.aim.2005.04.009 [Crossref] | Zbl 1098.42017
[11] Diening L., Harjulehto P., Hästö P., Ružicka M., Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, 2017. Springer, Berlin, 2011. DOI: 10.1007/978-3-642-18363-8 [Crossref] | Zbl 1222.46002
[12] Duduchava R., Integral Equations with Fixed Singularities. Teubner Verlagsgesellschaft, Leipzig, 1979. | Zbl 0429.45002
[13] Fremlin D.H., Measure Theory. Vol. 2: Broad Foundations, Torres Fremlin, Colchester, 2003.
[14] Grafakos L., Classical Fourier Analysis. 3rd ed. Graduate Texts in Mathematics, 249. Springer, New York, NY, 2014. DOI: 10.1007/978-1-4939-1194-3 [Crossref] | Zbl 1304.42001
[15] Grafakos L., Modern Fourier Analysis. 3rd ed. Graduate Texts in Mathematics, 250. Springer, New York, NY, 2014. DOI: 10.1007/978-1-4939-1230-8 [Crossref] | Zbl 1304.42002
[16] Hunt R.,Muckenhoupt B., Wheeden R., Weighted norm inequalities for the conjugate function and Hilbert transform. Trans. Am. Math. Soc., 1973, 176, 227–251. DOI: 10.1090/S0002-9947-1973-0312139-8 [Crossref] | Zbl 0262.44004
[17] Karlovich A.Yu., Algebras of singular integral operators with PC coefficients in rearrangement-invariant spaces with Muckenhoupt weights. J. Oper. Theory, 2002, 47, 303–323. | Zbl 1019.47051
[18] Karlovich A.Yu., Spitkovsky I.M., The Cauchy singular integral operator on weighted variable Lebesgue spaces. In Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation, Birkhäuser, Basel. Operator Theory: Advances and Applications, 2014, 236, pp. 275–291. DOI: 10.1007/978 − 3 − 0348 − 0648 − 017 [Crossref] | Zbl 1317.42007
[19] Lacey M., Carleson’s theorem: proof, complements, variations. Publ. Mat., 2004, 48, 251–307. DOI: 10.5565/PUBLMAT4820401 [Crossref] | Zbl 1066.42003
[20] Mastylo M., Pérez C., The Hardy-Littlewood maximal type operators between Banach function spaces. Indiana Univ. Math. J., 61, 2012, 883–900. DOI: 10.1512/iumj.2012.61.4708 [Crossref] | Zbl 1273.42020
[21] Roch S., Santos P.A., Silbermann B., Non-Commutative Gelfand Theories. A Tool-Kit for Operator Theorists and Numerical Analysts. Universitext. Springer-Verlag London, London, 2011. DOI: 10.1007/978-0-85729-183-7 [Crossref][WoS] | Zbl 1209.47002