In this short note, we prove that a Calabi extremal Kähler-Ricci soliton on a compact toric Kähler manifold is Einstein. This settles for the class of toric manifolds a general problem stated by the authors that they solved only under some curvature assumptions.
@article{bwmeta1.element.doi-10_1515_coma-2017-0012, author = {Simone Calamai and David Petrecca}, title = {Toric extremal K\"ahler-Ricci solitons are K\"ahler-Einstein}, journal = {Complex Manifolds}, volume = {4}, year = {2017}, pages = {179-182}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_coma-2017-0012} }
Simone Calamai; David Petrecca. Toric extremal Kähler-Ricci solitons are Kähler-Einstein. Complex Manifolds, Tome 4 (2017) pp. 179-182. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_coma-2017-0012/