Applications of Quaternionic Holomorphic Geometry to minimal surfaces
K. Leschke ; K. Moriya
Complex Manifolds, Tome 3 (2016), / Harvested from The Polish Digital Mathematics Library

In this paper we give a survey of methods of Quaternionic Holomorphic Geometry and of applications of the theory to minimal surfaces. We discuss recent developments in minimal surface theory using integrable systems. In particular, we give the Lopez–Ros deformation and the simple factor dressing in terms of the Gauss map and the Hopf differential of the minimal surface. We illustrate the results for well–known examples of minimal surfaces, namely the Riemann minimal surfaces and the Costa surface.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:287120
@article{bwmeta1.element.doi-10_1515_coma-2016-0015,
     author = {K. Leschke and K. Moriya},
     title = {Applications of Quaternionic Holomorphic Geometry to minimal surfaces},
     journal = {Complex Manifolds},
     volume = {3},
     year = {2016},
     zbl = {1359.30054},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_coma-2016-0015}
}
K. Leschke; K. Moriya. Applications of Quaternionic Holomorphic Geometry to minimal surfaces. Complex Manifolds, Tome 3 (2016) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_coma-2016-0015/