Formality and the Lefschetz property in symplectic and cosymplectic geometry
Giovanni Bazzoni ; Marisa Fernández ; Vicente Muñoz
Complex Manifolds, Tome 2 (2015), / Harvested from The Polish Digital Mathematics Library

We review topological properties of Kähler and symplectic manifolds, and of their odd-dimensional counterparts, coKähler and cosymplectic manifolds. We focus on formality, Lefschetz property and parity of Betti numbers, also distinguishing the simply-connected case (in the Kähler/symplectic situation) and the b1 = 1 case (in the coKähler/cosymplectic situation).

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:275956
@article{bwmeta1.element.doi-10_1515_coma-2015-0006,
     author = {Giovanni Bazzoni and Marisa Fern\'andez and Vicente Mu\~noz},
     title = {Formality and the Lefschetz property in symplectic and cosymplectic geometry},
     journal = {Complex Manifolds},
     volume = {2},
     year = {2015},
     zbl = {1327.53029},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_coma-2015-0006}
}
Giovanni Bazzoni; Marisa Fernández; Vicente Muñoz. Formality and the Lefschetz property in symplectic and cosymplectic geometry. Complex Manifolds, Tome 2 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_coma-2015-0006/

[1] E. Abbena, An example of an almost Kähler manifold which is not Kählerian, Boll. Un.Mat. Ital. A (6) 3 (1984), no. 3, 383–392. | Zbl 0559.53023

[2] J. Amorós, M. Burger, K. Corlette, D. Kotschick and D. Toledo, Fundamental groups of compact Kähler manifolds, Math. Surveys and Monographs 44, Amer. Math. Soc., 1996. | Zbl 0849.32006

[3] D. Angella, Cohomological Aspects in Complex Non-Kähler Geometry, Lecture Notes inMathematics, 2095, Springer-Verlag, Berlin, 2014. | Zbl 1290.32001

[4] D. Angella, A. Tomassini and W. Zhang, On cohomological decomposability of almost-Kähler structures, Proc. Amer. Math. Soc. 142 (2014), no. 10, 3615–3630. | Zbl 1298.53073

[5] V. I. Arnold, Mathematical Methods of Classical Mechanics, Second Edition, Graduate Texts in Mathematics 60, Springer, 1997.

[6] M. Audin, Exemples de variétés presque complexes, Einseign. Math. (2) 37 (1991), no. 1–2, 175–190. | Zbl 0736.53036

[7] M. Audin, Torus Actions on Symplectic Manifolds (Second revised edition) Progress in Mathematics 93, Birkhäuser, 2004.

[8] L. Auslander, An exposition of the structure of solvmanifolds. I. Algebraic theory, Bull. Amer. Math. Soc. 79 (1973), no. 2, 227–261. [Crossref] | Zbl 0265.22016

[9] D. Auroux, Asymptotically holomorphic families of symplectic submanifolds, Geom. Funct. Anal. 7 (1997), no. 6, 971–995. [Crossref] | Zbl 0912.53020

[10] I. K. Babenko and I. A. Taˇimanov, On nonformal simply-connected symplecticmanifolds, SiberianMath. Journal 41 (2) (2000), 204–217. [Crossref]

[11] W. P. Barth, K. Hulek, C. A. M. Peters and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 4. Springer-Verlag, Berlin, 2004.

[12] O. Baues, Infra-solvmanifolds and rigidity of subgroups in solvable linear algebraic groups, Topology 43 (2004), 903–924. [Crossref] | Zbl 1059.57022

[13] G. Bazzoni, M. Fernández and V. Muñoz, Non-formal co-symplectic manifolds, Trans. Amer. Math. Soc. 367 (2015), no. 6, 4459–4481. | Zbl 1317.53040

[14] G. Bazzoni, M. Fernández and V.Muñoz, A 6-dimensional simply connected complex and symplectic manifold with no Kähler metric, preprint http://arxiv.org/abs/1410.6045.

[15] G. Bazzoni and O. Goertsches, K-cosymplectic manifolds, Ann. Global Anal. Geom. 47 (2015), no. 3, 239–270. [Crossref]

[16] G. Bazzoni, G. Lupton and J. Oprea, Hereditary properties of co-Kähler manifolds, preprint http://arxiv.org/abs/1311.5675. | Zbl 1295.53016

[17] G. Bazzoni and V. Muñoz, Classification of minimal algebras over any field up to dimension 6, Trans. Amer. Math. Soc. 364 (2012), no. 2, 1007–1028. | Zbl 1239.55003

[18] G. Bazzoni and J. Oprea, On the structure of co-Kähler manifolds, Geom. Dedicata 170 (1) (2014), 71–85. | Zbl 1295.53016

[19] C. Benson and C. S. Gordon, Kähler and symplectic structures on nilmanifolds, Topology 27 (1988), no. 4, 513–518. [Crossref] | Zbl 0672.53036

[20] R. Bieri, Homological Dimension of Discrete Groups, Queen Mary College Mathematical Notes (2nd edition), London, 1981. | Zbl 0357.20027

[21] D. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Math. 203, Birkhäuser, 2002. | Zbl 1011.53001

[22] J.-L. Brylinski, A differential complex for Poisson manifolds, J. Differential Geom. 28 (1988), no. 1, 93–114. | Zbl 0634.58029

[23] C. Bock, On low-dimensional solvmanifolds, preprint, http://arxiv.org/abs/0903.2926. | Zbl 06579256

[24] A. Cannas da Silva, Lectures on symplectic geometry, Lecture Notes in Mathematics, 1764, Springer-Verlag, Berlin, 2008.

[25] B. Cappelletti-Montano, A. de Nicola and I. Yudin, A survey on cosymplectic geometry, Rev. Math. Phys. 25 (10), 1343002 (2013). [Crossref] | Zbl 1292.53053

[26] G. R. Cavalcanti, The Lefschetz property, formality and blowing up in symplectic geometry, Trans. Amer. Math. Soc. 359 (2007), no. 1, 333–348. | Zbl 1115.53060

[27] G. R. Cavalcanti, M. Fernández and V. Muñoz, Symplectic resolutions, Lefschetz property and formality, Adv. Math. 218 (2008), no. 2, 576–599. [Crossref] | Zbl 1142.53070

[28] D. Chinea, M. de León and J. C. Marrero, Topology of cosymplectic manifolds, J. Math. Pures Appl. 72 (1993), no. 6, 567–591. | Zbl 0845.53025

[29] S. Console and A. Fino, On the de Rham cohomology of solvmanifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10 (2011), no. 4, 801–818. | Zbl 1242.53055

[30] S. Console and M.Macrì, Lattices, cohomology and models of six-dimensional almost abelian solvmanifolds, preprint, http: //arxiv.org/abs/1206.5977.

[31] L. A. Cordero, M. Fernández and A. Gray, Symplectic manifolds with no Kähler structure, Topology 25 (1986), no. 3, 375–380. [Crossref] | Zbl 0596.53030

[32] P. Deligne, P. Griflths, J. Morgan and D. Sullivan, Real Homotopy Theory of Kähler Manifolds, Invent. Math. 29 (1975), no. 3, 245–274. [Crossref] | Zbl 0312.55011

[33] S. K. Donaldson, Symplectic submanifolds and almost-complex geometry, J. Diff. Geom. 44 (1996), no. 4, 666–705. | Zbl 0883.53032

[34] S. K. Donaldson, Two-forms on four-manifolds and elliptic equations, Inspired by S. S. Chern, 153–172, Nankai Tracts.Math. 11, World Sci. Publ. Hackensack, NJ, 2006. [Crossref] | Zbl 1140.58018

[35] Y. Félix, S. Halperin and J.C. Thomas, Rational Homotopy Theory, Graduate Texts in Mathematics 205, Springer, 2001.

[36] Y. Félix, J. Oprea and D. Tanré, Algebraic Models in Geometry, Oxford Graduate Texts in Mathematics, 17. Oxford University Press, 2008. | Zbl 1149.53002

[37] M. Fernández, M. de León and M. Saralegui, A six-dimensional compact symplectic solvmanifold without Kähler structures, Osaka J. Math. 33 (1996), no. 1, 19–35. | Zbl 0861.53032

[38] M. Fernández, M. Gotay and A. Gray, Four-dimensional parallelizable symplectic and complex manifolds, Proc. Amer. Math. Soc. 103 (1988), no. 4, 1209–1212. [Crossref] | Zbl 0656.53034

[39] M. Fernández and A. Gray, The Iwasawa manifold, Differential geometry, Peñíscola 1985, 157–159, Lecture Notes in Math., 1209, Springer, Berlin, 1986.

[40] M. Fernández and A. Gray, Compact symplectic four dimensional solvmanifolds not admitting complex structures, Geom. Dedicata 34 (1990), no. 4, 295–299. | Zbl 0703.53030

[41] M. Fernández and V.Muñoz, Homotopy properties of symplectic blow-ups, Proceedings of the XII Fall Workshop on Geometry and Physics, 95–109, Publ. R. Soc. Mat. Esp., 7, 2004. | Zbl 1066.57029

[42] M. Fernández and V. Muñoz, Formality of Donaldson submanifolds, Math. Zeit. 250 (2005), no. 1, 149–175. [Crossref] | Zbl 1071.57024

[43] M. Fernández and V.Muñoz, Non-formal compact manifolds with small Betti numbers, Proceedings of the Conference “Contemporary Geometry and Related Topics”. N. Bokan, M. Djoric, A. T. Fomenko, Z. Rakic, B. Wegner and J. Wess (editors), 231–246, 2006. | Zbl 1199.55009

[44] M. Fernández and V. Muñoz, An 8-dimensional non-formal simply connected symplectic manifold, Ann. of Math. (2) 167 (2008), no. 3, 1045–1054. | Zbl 1173.57012

[45] M. Fernández, V. Muñoz and J. Santisteban, Cohomologically Kähler manifolds with no Kähler metrics, IJMMS. 52 (2003), 3315–3325. | Zbl 1049.53059

[46] R. E. Gompf, A new construction fo symplectic manifolds, Ann. of Math. (2) 142 (1995), no. 3, 527–595. | Zbl 0849.53027

[47] P. Griflths and J. Morgan, Rational Homotopy Theory and Differential Forms (Second edition) Progress in Mathematics 16, Birkhäuser, 2013.

[48] M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), no. 2, 307–347. [Crossref] | Zbl 0592.53025

[49] M. Gromov, Partial differential relations, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 9. Springer-Verlag, Berlin, 1986.

[50] Z.-D. Guan, Modification and the cohomology groups of compact solvmanifolds, Electron. Res. Announc. Amer. Math. Soc. 13 (2007), 74–81. [Crossref] | Zbl 1134.53024

[51] Z.-D. Guan, Toward a Classification of Compact Nilmanifolds with Symplectic Structures, Int. Math. Res. Not. IMRN (2010), no. 22, 4377–4384. | Zbl 1236.53045

[52] V. Guillemin, E. Miranda and A. R. Pires, Codimension one symplectic foliations and regular Poisson structures, Bull. Braz. Math. Soc. (N. S.) 42 (2011), no. 4, 607–623. [Crossref] | Zbl 1244.53093

[53] V. Guillemin, E. Miranda and A. R. Pires, Symplectic and Poisson geometry of b-manifolds, Adv.Math. 264 (2014), 864–896. | Zbl 1296.53159

[54] K. Hasegawa, Minimal Models of Nilmanifolds, Proc. Amer. Math. Soc. 106 (1989), no. 1, 65–71. [Crossref] | Zbl 0691.53040

[55] K. Hasegawa, A note on compact solvmanifolds with Kähler structures, Osaka J. Math. 43 (2006), no. 1, 131–135. | Zbl 1105.32017

[56] A. Hattori, Spectral sequences in the de Rhamcohomology of fibre bundles, J. Fac. Sci. Univ. Tokyo Sect. I 8 (1960), 289–331. | Zbl 0099.18003

[57] D. Huybrechts, Complex geometry. An introduction, Universitext. Springer-Verlag, Berlin, 2005.

[58] R. Ibáñez, Y. Rudyak, A. Tralle and L. Ugarte, On certain geometric and homotopy properties of closed symplectic manifolds, Top. and its Appl. 127 (2003), no. 1-2, 33–45. [Crossref] | Zbl 1033.53077

[59] H. Kasuya, Cohomologically symplectic solvmanifolds are symplectic, J. Symplectic Geom. 9 (2011), no. 4, 429–434. | Zbl 1338.53118

[60] H. Kasuya, Formality and hard Lefschetz property of aspherical manifolds, Osaka J. Math. 50 (2013), no. 2, 439–455. | Zbl 1283.53068

[61] J. Kędra, Y. Rudyak and A. Tralle, Symplectically aspherical manifolds, J. Fixed Point Theory Appl. 3 (2008), no. 1, 1–21. | Zbl 1149.53320

[62] K. Kodaira, On the structure of compact complex analytic surfaces. I, Amer. J. Math. 86 (1964), 751–798. [Crossref] | Zbl 0137.17501

[63] J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, in “Élie Cartan et les Math. d’Aujourd’Hui”, Astérisque horssérie, 1985, 251–271.

[64] D. Kotschick, On products of harmonic forms, Duke Math. J. 107 (2001), no. 3, 521–531. | Zbl 1036.53030

[65] D. Kotschick and S. Terzić, On formality of generalized symmetric spaces, Math. Proc. Cambridge Philos. Soc. 134 (2003), no. 3, 491–505. | Zbl 1042.53035

[66] H. Li, Topology of co-symplectic/co-Kähler manifolds, Asian J. Math., 12 (2008), no. 4, 527–543. | Zbl 1170.53014

[67] T.-J. Li and W. Zhang, Comparing tamed and compatible symplectic cones and cohomological properties of almost complex manifolds, Commun. Anal. Geom. 17 (2009), no. 4, 651–683. [Crossref] | Zbl 1225.53066

[68] P. Libermann, Sur les automorphismes infinitésimaux des structures symplectiques et des structures de contact, Colloque Géom. Diff. Globale (Bruxelles 1958), 37–59, 1959.

[69] P. Libermann and C. Marle, Symplectic Geometry and Analytical Mechanics, Kluwer, Dordrecht, 1987.

[70] G. Lupton and J. Oprea, Symplectic manifolds and formality, J. Pure Appl. Algebra 91 (1994), no. 1-3, 193–207. [Crossref] | Zbl 0789.55010

[71] G. Lupton and J. Oprea, Cohomologically symplectic spaces: toral actions and the Gottlieb group, Trans. Amer. Math. Soc. 347 (1995), no. 1, 261–288. | Zbl 0836.57019

[72] M.Macrì, Cohomological properties of unimodular six dimensional solvable Lie algebras, Differential Geom. Appl. 31 (2013), no. 1, 112–129. [Crossref] | Zbl 1263.53045

[73] A. Mal’čev, On a class of homogeneous spaces, Izv. Akad. Nauk. Armyan. SSSR Ser. Mat. 13 (1949), 201–212.

[74] J. E. Marsden and A. Weinstein, Reduction of symplectic manifolds with symmetry, Rep. Mathematical Phys. 5 (1974), no. 1, 121–130. | Zbl 0327.58005

[75] D.Martínez Torres, Codimension-one foliations calibrated by nondegenerate closed 2-forms, Pacific J.Math. 261 (2013), no. 1, 165–217. | Zbl 1276.53032

[76] O. Mathieu, Harmonic cohomology classes of symplectic manifolds, Comment. Math. Hel. 70 (1995), no. 1, 1–9. [Crossref] | Zbl 0831.58004

[77] D. McDuff, Examples of symplectic simply connected manifolds with no Kähler structure, J. Diff. Geom. 20 (1984), no. 1, 267–277.

[78] D. McDuff and D. Salamon, Introduction to Symplectic Topology, Second edition. Oxford Mathematical Monographs, 1998. | Zbl 0844.58029

[79] D. McDuff and D. Salamon, J-holomophic curves and symplectic topology, Colloquium Publications Volume 52, American Mathematical Society, 2004. | Zbl 1064.53051

[80] S. A. Merkulov, Formality of canonical symplectic complexes and Frobenius manifolds, Internat. Math. Res. Notices (1998), no. 14, 727–733. [Crossref] | Zbl 0931.58002

[81] J. T. Miller, On the formality of (k − 1)-connected compact manifolds of dimension less than or equal to (4k − 2), Illinois J. Math. 23 (1979), 253–258. | Zbl 0412.57014

[82] V.Muñoz, F. Presas and I. Sols, Almost holomorphic embeddings in Grassmannians with applications to singular symplectic submanifolds, J. Reine Angew. Math. 547 (2002), 149–189. | Zbl 1004.53042

[83] K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. of Math. 59 (1954), no. 2, 531–538. [Crossref] | Zbl 0058.02202

[84] J. Oprea and A. Tralle, Symplectic manifolds with no Kähler structure, Lecture Notes in Mathematics, 1661, Springer-Verlag, Berlin, 1997. | Zbl 0891.53001

[85] L. Ornea and M. Pilca, Remarks on the product of harmonic forms, Pacific J. Math. 250 (2011), no. 2, 353–363. | Zbl 1232.53033

[86] S. Salamon, Complex structures on nilpotent Lie algebras, J. Pure Appl. Algebra 157 (2001), no. 2–3, 311–333. | Zbl 1020.17006

[87] H. Sawai and T. Yamada, Lattices on Benson-Gordon type solvable Lie groups, Topology Appl. 149 (2005), no. 1–3, 85–95. | Zbl 1069.53059

[88] P. Seidel, Fukaya categories and Picard-Lefschetz theory, European Mathematical Society, Zürich, 2008. | Zbl 1159.53001

[89] D. Sullivan, Infinitesimal Computations in Topology, Publications Mathématiques de l’I. H. É. S. 47 (1977), 269–331.

[90] W. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), no. 2, 467–468. | Zbl 0324.53031

[91] D. Tischler, Closed 2-forms and an embedding theorem for symplectic manifolds, J. Diff. Geom. 12 (1977), 229–235. | Zbl 0386.58001

[92] D. Yan, Hodge Structure on Symplectic Manifolds, Adv. Math. 120 (1996), no. 1, 143–154. [Crossref] | Zbl 0872.58002