Holomorphic Poisson Cohomology
Zhuo Chen ; Daniele Grandini ; Yat-Sun Poon
Complex Manifolds, Tome 2 (2015), / Harvested from The Polish Digital Mathematics Library

Holomorphic Poisson structures arise naturally in the realm of generalized geometry. A holomorphic Poisson structure induces a deformation of the complex structure in a generalized sense, whose cohomology is obtained by twisting the Dolbeault @-operator by the holomorphic Poisson bivector field. Therefore, the cohomology space naturally appears as the limit of a spectral sequence of a double complex. The first sheet of this spectral sequence is simply the Dolbeault cohomology with coefficients in the exterior algebra of the holomorphic tangent bundle. We identify various necessary conditions on compact complex manifolds on which this spectral sequence degenerates on the level of the second sheet. The manifolds to our concern include all compact complex surfaces, Kähler manifolds, and nilmanifolds with abelian complex structures or parallelizable complex structures.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:275919
@article{bwmeta1.element.doi-10_1515_coma-2015-0005,
     author = {Zhuo Chen and Daniele Grandini and Yat-Sun Poon},
     title = {Holomorphic Poisson Cohomology},
     journal = {Complex Manifolds},
     volume = {2},
     year = {2015},
     zbl = {1323.32021},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_coma-2015-0005}
}
Zhuo Chen; Daniele Grandini; Yat-Sun Poon. Holomorphic Poisson Cohomology. Complex Manifolds, Tome 2 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_coma-2015-0005/

[1] W. Barth, C. Peters&A. Van de Ven, Compact Complex Surfaces, Ergebnisse derMathematik und ihrer Grenzgebiete, Springer- Verlag (1984) Berlin.

[2] C. Bartocci & E Marci, Classification of Poisson surfaces, Commun. Contemp. Math. 7 (2005) 89–95. [Crossref] | Zbl 1071.14514

[3] S. Console, Dolbeault cohomology and deformations of nilmanifolds, Rev. de al UMA. 47 (1) (2006), 51–60. | Zbl 1187.58024

[4] S. Console & A. Fino, Dolbeault cohomology of compact nilmanifolds, Transform. Groups. 6 (2001), 111-124. [Crossref] | Zbl 1028.58024

[5] S. Console, A. Fino, & Y. S. Poon, Stability of abelian complex structures, International J. Math. 17 (2006), 401–416. | Zbl 1096.32009

[6] L. A. Cordero, M. Fernández, A. Gray & L. Ugarte, Compact nilmanifolds with nilpotent complex structures: Dolbeault cohomology, Trans. Amer. Math. Soc., 352 (2000), 5405–5433. | Zbl 0965.32026

[7] D. Fiorenza & M. Manetti, Formality of Koszul brackets and deformations of holomorphic Poisson manifolds, preprint, arXiv:1109.4309v2. [WoS] | Zbl 1267.18014

[8] P. Gauduchon, Hermitian connections and Dirac operators, Bollettino U.M.I. 11B (1997), 257–288. | Zbl 0876.53015

[9] R.Goto, Deformations of generalized complex and generalized Kähler structures, J. Differential Geom. 84 (2010), 525–560. | Zbl 1201.53085

[10] D. Grandini, Y.-S. Poon, & B. Rolle, Differential Gerstenhaber algebras of generalized complex structures, Asia J. Math. 18 (2014) 191–218. | Zbl 1298.53083

[11] G. Grantcharov, C. McLaughlin, H. Pedersen, & Y. S. Poon, Deformations of Kodaira manifolds, Glasgow Math. J. 46 (2004), 259–281. | Zbl 1066.32017

[12] M. Gualtieri, Generalized complex geometry, Ann. of Math. 174 (2011), 75–123. | Zbl 1235.32020

[13] N. J. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. 54 (2003), 281–308. | Zbl 1076.32019

[14] N. J. Hitchin, Instantons, Poisson structures, and generalized Kähler geometry, Commun. Math. Phys. 265 (2006), 131–164. | Zbl 1110.53056

[15] N. J. Hitchin, Deformations of holomorphic Poisson manifolds, Mosc. Math. J. 669 (2012), 567–591. | Zbl 1267.32010

[16] T. Höfer, Remarks on principal torus bundles, J. Math. Kyoto U., 33 (1993), 227–259. | Zbl 0788.32023

[17] W. Hong, & P. Xu, Poisson cohomology of Del Pezzo surfaces, J. Algebra 336 (2011), 378–390. [WoS] | Zbl 1234.14018

[18] Z. J. Liu, A. Weinstein, & P. Xu, Manin triples for Lie bialgebroids, J. Differential Geom. (1997), 547–574. | Zbl 0885.58030

[19] K. C. H. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, London Math. Soc. Lecture Notes Series 213, Cambridge U Press, 2005. | Zbl 1078.58011

[20] C. Maclaughlin, H. Pedersen, Y. S. Poon, & S. Salamon, Deformation of 2-step nilmanifolds with abelian complex structures, J. London Math. Soc. 73 (2006) 173–193. | Zbl 1089.32007

[21] K. Nomizu, On the cohomology of compact homogenous spaces of nilpotent Lie groups, Ann. Math. 59 (1954), 531–538. | Zbl 0058.02202

[22] A. Polishchuk, Algebraic geometry of Poisson brackets, J. Math. Sci. (New York) 84 (1997), 1413–1444. | Zbl 0995.37057

[23] Y. S. Poon, Extended deformation of Kodaira surfaces, J. reine angew. Math. 590 (2006), 45–65. | Zbl 1122.32012

[24] B. Rolle, Construction of weak mirrir pairs by deformations, Ph.D. Thesis, University of California at Riverside. (2011).

[25] S. Rollenske, Lie algebra Dolbeault cohomology and small deformations of nilmanifolds, J. London.Math. Soc. (2) 79 (2009), 346–362. [WoS][Crossref] | Zbl 1194.32006

[26] Y. Sakane, On compact complex parallelisable solvmanifolds, Osaka J. Math. 13 (1976), 187–212. | Zbl 0361.22005

[27] S. M. Salamon, Complex structures on nilpotent Lie algebras, J. Pure Appl. Algebra 157 (2001), 311–333. | Zbl 1020.17006

[28] C. Voisin, Hodge Theory and Complex Algebraic Geometry, I, Cambridge studies in advanced mathematics 76 (2004), Cambridge University Press.