Compact lcK manifolds with parallel vector fields
Andrei Moroianu
Complex Manifolds, Tome 2 (2015), / Harvested from The Polish Digital Mathematics Library

We show that for n > 2 a compact locally conformally Kähler manifold (M2n , g, J) carrying a nontrivial parallel vector field is either Vaisman, or globally conformally Kähler, determined in an explicit way by a compact Kähler manifold of dimension 2n − 2 and a real function.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:275837
@article{bwmeta1.element.doi-10_1515_coma-2015-0004,
     author = {Andrei Moroianu},
     title = {Compact lcK manifolds with parallel vector fields},
     journal = {Complex Manifolds},
     volume = {2},
     year = {2015},
     zbl = {1320.32024},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_coma-2015-0004}
}
Andrei Moroianu. Compact lcK manifolds with parallel vector fields. Complex Manifolds, Tome 2 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_coma-2015-0004/

[1] F. Belgun, On the metric structure of non-Kähler complex surfaces, Math. Ann. 317 (2000), 1–40. | Zbl 0988.32017

[2] N. Buchdahl, On compact Kähler surfaces, Ann. Inst. Fourier 49 no. 1 (1999), 287–302. [Crossref] | Zbl 0926.32025

[3] S. Dragomir, L. Ornea, Locally conformal Kähler geometry, Progress in Math. 155, Birkhäuser, Boston, Basel, 1998. | Zbl 0887.53001

[4] P. Gauduchon, A. Moroianu, L. Ornea, Compact homogeneous lcK manifolds are Vaisman, Math. Ann. 361 (3-4), (2015), 1043– 1048. [WoS] | Zbl 1319.53081

[5] P. Gauduchon, L. Ornea, Locally conformally Kähler metrics on Hopf surfaces, Ann. Inst. Fourier 48 no. 4 (1998), 1107–1127. [Crossref] | Zbl 0917.53025

[6] A. Lamari, Courants kählériens et surfaces compactes, Ann. Inst. Fourier 49 no. 1 (1999), 263–285. [Crossref] | Zbl 0926.32026

[7] L. Ornea, M. Verbitsky, Structure theorem for compact Vaisman manifolds, Math. Res. Lett., 10 (2003), 799–805. | Zbl 1052.53051

[8] I. Vaisman, A survey of generalizedHopf manifolds, Rend. Sem.Mat. Univ. Politec. Torino 1983, Special Issue (1984), 205–221.