The Fujiki class and positive degree maps
Gautam Bharali ; Indranil Biswas ; Mahan Mj
Complex Manifolds, Tome 2 (2015), / Harvested from The Polish Digital Mathematics Library

We show that a map between complex-analytic manifolds, at least one ofwhich is in the Fujiki class, is a biholomorphism under a natural condition on the second cohomologies. We use this to establish that, with mild restrictions, a certain relation of “domination” introduced by Gromov is in fact a partial order.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:275887
@article{bwmeta1.element.doi-10_1515_coma-2015-0002,
     author = {Gautam Bharali and Indranil Biswas and Mahan Mj},
     title = {The Fujiki class and positive degree maps},
     journal = {Complex Manifolds},
     volume = {2},
     year = {2015},
     zbl = {1320.32023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_coma-2015-0002}
}
Gautam Bharali; Indranil Biswas; Mahan Mj. The Fujiki class and positive degree maps. Complex Manifolds, Tome 2 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_coma-2015-0002/

[1] Abramovich D., Karu K., Matsuki K., Włodarczyk J., Torification and factorization of birational maps, Jour. Amer. Math. Soc., 2002, 15, 531–572 | Zbl 1032.14003

[2] Arapura D., Kähler solvmanifolds, Int. Math. Res. Not., 2004(3), 131–137 [Crossref]

[3] Barlet D., How to use the cycle space in complex geometry, In: Several Complex Variables, Papers from the MSRI Program held in Berkeley, CA, 1995–1996, Math. Sci. Res. Inst. Publ., 37, Cambridge University Press, Cambridge, 1999, 25–42

[4] Beauville A., Endomorphisms of hypersurfaces and other manifolds, Internat. Math. Res. Notices, 2001(1), 53–58 | Zbl 0986.14022

[5] Bharali G., Biswas I., Rigidity of holomorphic maps between fiber spaces, Internat. J. Math., 2014, 25(1), #145006, 8pp. [Crossref] | Zbl 1288.32026

[6] Blanchard A., Sur les variétés analytiques complexes, Ann. Sci. Ecole Norm. Sup., 1956, 73, 157–202 | Zbl 0073.37503

[7] Carlson J.A., Toledo D., Harmonic mappings of Kähler manifolds to locally symmetric spaces, Inst. Hautes Etudes Sci. Publ. Math., 1989, 69, 173–201 | Zbl 0695.58010

[8] Fujiki A., Closedness of the Douady spaces of compact Kähler spaces, Publ. Res. Inst. Math. Sci., 1978/79, 14, 1–52 [Crossref] | Zbl 0409.32016

[9] Fujimoto Y., Endomorphisms of smooth projective 3-folds with non-negative Kodaira dimension, Publ. Res. Inst. Math. Sci., 2002, 38(1), 33–92 | Zbl 1053.14049

[10] Hironaka H., Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math., 1964, 79, 109–326 | Zbl 0122.38603

[11] Hironaka H., Flattening theorem in complex-analytic geometry, Amer. Jour. Math., 1975, 97, 503–547 | Zbl 0307.32011

[12] Toledo D., personal communication, 2013

[13] Varouchas J., Stabilité de la classe des variétés Kähleriennes par certaines morphismes propres, Invent.Math., 1984, 77(1), 117–127 | Zbl 0529.53049

[14] Varouchas J., Kähler spaces and proper open morphisms, Math. Ann., 1989, 283(1), 13–52 | Zbl 0632.53059