We consider paraKähler Lie algebras, that is, even-dimensional Lie algebras g equipped with a pair (J, g), where J is a paracomplex structure and g a pseudo-Riemannian metric, such that the fundamental 2-form Ω(X, Y) = g(X, JY) is symplectic. A complete classification is obtained in dimension four.
@article{bwmeta1.element.doi-10_1515_coma-2015-0001, author = {Giovanni Calvaruso}, title = {A complete classification of four-dimensional paraK\"ahler Lie algebras}, journal = {Complex Manifolds}, volume = {2}, year = {2015}, zbl = {1334.53018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_coma-2015-0001} }
Giovanni Calvaruso. A complete classification of four-dimensional paraKähler Lie algebras. Complex Manifolds, Tome 2 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_coma-2015-0001/
[1] D.V. Alekseevsky, C. Medori, A. Tomassini, Homogeneous para-Kähler Einstein manifolds, Russian Math. Surveys, 64 (2009), 1–43. [Crossref][WoS] | Zbl 1179.53050
[2] A. Andrada, M.L. Barberis, I.G. Dotti, G. Ovando, Product structures on four-dimensional solvable Lie algebras, Homology, Homotopy and Applications, 7 (2005), 9–37. | Zbl 1165.17303
[3] P. Baird and L. Danielo, Three-dimensional Ricci solitons which project to surfaces, J. Reine Angew.Math., 608 (2007), 65–91. [WoS] | Zbl 1128.53020
[4] N. Blazić, S. Vukmirović, Four-dimensional Lie algebras with a para-hypercomplex structure, Rocky Mountain J. Math., 40 (2010), 1391–1439. | Zbl 1207.53071
[5] M. Brozos-Vazquez, G. Calvaruso, E. Garcia-Rio and S. Gavino-Fernandez, Three-dimensional Lorentzian homogeneous Ricci solitons, Israel J. Math., 188 (2012), 385–403. | Zbl 1264.53052
[6] G. Calvaruso, Symplectic, complex and Kähler structures on four-dimensional generalized symmetric spaces, Diff. Geom. Appl., 29 (2011), 758–769. [Crossref] | Zbl 1228.53037
[7] G. Calvaruso, Four-dimensional paraKähler Lie algebras: classification and geometry, Houston J. Math., to appear.
[8] G. Calvaruso and A. Fino, Complex and paracomplex structures on homogeneous pseudo-Riemannian four-manifolds, Int. J. Math., 24 (2013), 1250130, 28 pp. [Crossref][WoS] | Zbl 1266.53033
[9] G. Calvaruso and A. Fino, Ricci solitons and geometry of four-dimensional non-reductive homogeneous spaces, Canad. J. Math., 64 (2012), 778–804. | Zbl 1252.53056
[10] G. Calvaruso and A. Fino, Four-dimensional pseudo-Riemannian homogeneous Ricci soliton, Arxiv: 1111.6384. To appear in Int. J. Geom. Methods Mod. Phys. [WoS]
[11] H.-D. Cao, Recent progress on Ricci solitons, Recent advances in geometric analysis, 1–38, Adv. Lect. Math. (ALM), 11, Int. Press, Somerville, MA, 2010.
[12] V. Cruceanu, P. Fortuny and P.M. Gadea, A survey on paracomplex geometry, Rocky Mount. J. Math., 26 (1996), 83–115. | Zbl 0856.53049
[13] B.Y. Chu, Symplectic homogeneous spaces, Trans. Amer. Math. Soc., 197 (1974), 145–159. | Zbl 0261.53039
[14] A.S. Dancer and M.Y. Wang, Some new examples on non-Ka¨ hler Ricci solitons, Math. Res. Lett., 16 (2009), no. 2, 349–363. [Crossref]
[15] A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicata, 7 (1978), 259–280. | Zbl 0378.53018
[16] J. Lauret, Ricci solitons solvmanifolds, J. Reine Angew. Math., 650 (2011), 1–21.
[17] G. Ovando, Invariant complex structures on solvable real Lie groups, Manuscripta Math., 103, (2000), 19–30. | Zbl 0972.32017
[18] G. Ovando, Four-dimensional symplectic Lie algebras, Beiträge Algebra Geom., 47(2006), no. 2, 419–434. | Zbl 1155.53042
[19] G. Ovando, Invariant pseudo-Kähler metrics in dimension four, J. Lie Theory, 16 (2006), 371–391. | Zbl 1102.32011