This paper presents a derivation of the Rayleigh- Betti reciprocity relation for layered curved composite beams with interlayer slip. The principle of minimum of potential energy is also formulated for two-layer curved composite beams and its applications are illustrated by numerical examples. The solution of the presented problems are obtained by the Ritz method. The applications of the Rayleigh-Betti reciprocity relation proven are illustrated by some examples.
@article{bwmeta1.element.doi-10_1515_cls-2015-0020, author = {Istv\'an Ecsedi and \'Akos J\'ozsef Lengyel}, title = {Energy methods for curved composite beams with partial shear interaction}, journal = {Curved and Layered Structures}, volume = {2}, year = {2015}, zbl = {06476036}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_cls-2015-0020} }
István Ecsedi; Ákos József Lengyel. Energy methods for curved composite beams with partial shear interaction. Curved and Layered Structures, Tome 2 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_cls-2015-0020/
[1] Challamel N., Girhammar U.A., Variationally-based theories for buckling of partial composite beam-columns including shear and axial effects, Engineering Structures, 2011, 33(8), 2297-2319. [WoS][Crossref]
[2] Özer H., Variational principles for bending and vibration of partially composite Timoshenko beams, Mathematical Problems in Engineering, 2014, Article ID 435613, 5 pages, DOI: http://dx.doi.org/10.1155/2014/435613 [Crossref]
[3] Xu R., Wang G., Variational principle of partial-interaction composite beams using Timoshenko’s beam theory, International Journal of Mechanical Sciences, 2012, 60(1), 72-83. [WoS]
[4] Xu R., Chen D., Variational principles of partial-interaction composite beams, Journal of Engineering Mechanics, 2012, 138(5), 542-551.
[5] Newmark N.M., Siess C.P., Viest I.M., Test and analysis of composite beam with incomplete interaction, Proceedings of the Society for Experimental Stress Analysis, 1951, 9, 75-92.
[6] Girhammar U.A., Gopu V.K.A., Composite beam-columns with interlayer slip – Exact analysis, ASCE Journal of Structural Engineering, 1993, 119(4), 1265-1282. [Crossref]
[7] Girhammar U.A., Pan D.H., Exact static analysis of partially composite beams and beam-columns, International Journal of Mechanical Sciences, 2007, 49(2), 239-255.
[8] Planinc I., Schnabl S., Saje M., Lopatič J., Čas B., Numerical and experimental analysis of timber composite beams with interlayer slip, Engineering Structures, 2008, 30(11), 2959-2969. [Crossref][WoS]
[9] Ecsedi I., Dluhi K., A linear model for the static and dynamic analysis of non-homogeneous curved beams, Applied Mathematical Modelling, 2005, 29(12), 1211-1231. | Zbl 1113.74039
[10] Segura J.M., Armengaud G., Analytical formulation of stresses in curved composite beams, Archive of Applied Mechanics, 1998, 68(3-4), 206-213. [Crossref] | Zbl 0907.73032
[11] Qatu M.S., Theories and analyses of thin and moderately thick laminated composite curved beams, International Journal of Solids and Structures, 1993, 30(20), 2743-2756. | Zbl 0782.73033
[12] Ibrahimbegovič A., Frey F., Finite element analysis of linear and non-linear planar deformations of elastic initially curved beams, International Journal for Numerical Methods in Engineering, 1993, 36(19), 3239-3258. | Zbl 0789.73069
[13] Ascione L., Fraternali F., A penalty model for the analysis of curved composite beams, Computers & Structures, 1992, 45(5- 6), 985-999. | Zbl 0775.73234
[14] Bhimaraddi A., Carr A.J., Moss P.J., Generalized finite element analysis of laminated curved beams with constant curvature, Computers & Structures, 1989, 31(3), 309-317.
[15] Assma H.I., Experimental and analytical study of bending stresses and deflections in curved beam made of laminated composite material, Al-Khwarizmi Engineering Journal, 2014, 10(4), 21-32.
[16] Liu X., Erkmen R.E., Bradford M.A., Creep and shrinkage analysis of curved composite beams including the effects of partial interaction, Paper 154, Proceedings of the Eleventh International Conference on Computational Structures Technology, B. H. V. Topping (Editor), Civil-Comp Press, Stirlingshire, Scotland, 2012
[17] Erkmen R.E., Bradford M.A., Nonlinear elastic analysis of composite beams curved in-plan, Engineering Structures, 2009, 31(7), 1613-1624. [Crossref]
[18] Tan. E.L., Uy B., Nonlinear analysis of composite beams subjected to combined flexure and torsion, Journal of Constructional Steel Research, 2011, 67(5), 790-799. [Crossref]
[19] Ecsedi I., Lengyel Á.J., Curved composite beam with interlayer slip loaded by radial load, Curved and Layered Structures, 2015, 2, 50-58.
[20] Washizu K., Variational Methods in Elasticity and Plasticity, Pergamon Press, New York, 1975 | Zbl 0339.73035
[21] Richard T.H., Energy Methods in Stress Analysis. With an Introduction to Finite Element Techniques, Ellis Horwood, Chichester, 1977
[22] Elsgolts L., Differential Equations and the Calculus of Variations, Mir Publishers, Moscow, 1977