Stochastic Thermal Post Buckling Response of Elastically Supported Laminated Piezoelectric Composite Plate Using Micromechanical approach
Achchhe Lal ; Nikhil M. Kulkarni ; B.N. Singh
Curved and Layered Structures, Tome 2 (2015), / Harvested from The Polish Digital Mathematics Library

In this paper, second order statistics of thermally induced post buckling response of elastically supported piezoelectric laminated composite plate using micromechanical approach is examined. A Co finite element has been used for deriving eigenvalue problem using higher order shear deformation theory (HSDT) with von-Karman nonlinearity. The uncertain system properties such as material properties of fiber and matrix of composite and piezoelectric, fiber volume fraction, plate thickness, lamination angle and foundation are modeled as random variables. The temperature field considered to be uniform temperature distributions through the plate thickness. A direct iterative based nonlinear finite element method combined with mean-centered second order perturbation technique (SOPT) is used to find the mean and coefficient of variance of the post buckling temperature. The effects of volume fraction, fiber orientation, and length to thickness ratio, aspect ratios, foundation parameters, position and number of piezoelectric layers, amplitude and boundary conditions with random system properties on the critical temperature are analysed. It is found that small amount of variations of uncertain system parameters of the composite plate significantly affect the initial and post buckling temperature of laminated composite plate. The results have been validated with independent Monte Carlo simulation (MCS) and those available in literature.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:276836
@article{bwmeta1.element.doi-10_1515_cls-2015-0019,
     author = {Achchhe Lal and Nikhil M. Kulkarni and B.N. Singh},
     title = {Stochastic Thermal Post Buckling Response of Elastically Supported Laminated Piezoelectric Composite Plate Using Micromechanical approach},
     journal = {Curved and Layered Structures},
     volume = {2},
     year = {2015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_cls-2015-0019}
}
Achchhe Lal; Nikhil M. Kulkarni; B.N. Singh. Stochastic Thermal Post Buckling Response of Elastically Supported Laminated Piezoelectric Composite Plate Using Micromechanical approach. Curved and Layered Structures, Tome 2 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_cls-2015-0019/

[1] Prabhu M.R., Dhanaraj R., Thermal buckling of laminated composite plates, Comp. Struct., 1994, 53, 1193-1204. [Crossref] | Zbl 0875.73064

[2] Chen Lien-wen, Chen Lei-Yi., Thermal buckling behaviour of laminated composite plates with temperature-dependent properties, Compos. Struct., 1989, 13(4), 275–87.

[3] Shen H.S., Thermal post buckling behaviour of imperfect shear deformable laminated plates with temperature-dependent properties, Comput. Meth. Appl. Mech. Eng. 2001, 190, 5377–90. | Zbl 1006.74040

[4] Srikanth G., Kumar A. Post buckling response and failure of symmetric laminates under uniform temperature rise, Compos. Struct., 2003, 59, 109–18.

[5] Shariyat M., Thermal buckling analysis of rectangular composite plates with temperature-dependent properties based on a layer wise theory, Thin-Walled Struct., 2007, 45(4), 439–52.

[6] Pandey R., Shukla K.K., Jain A., Thermoelastic stability analysis of laminated composite plates, an analytical approach, Commun. Nonl. Sci. Numer. Simulat., 2008, 14(4), 1679–99. [Crossref] | Zbl 1221.74021

[7] Shukla K.K., Huang J.H., Nath Y., Thermal post buckling of laminated composite plates with temperature dependent properties, J. Engin.Mech., ASCE, 2004, 130(7), 818-825.

[8] Jifeng Xu, Qun Zhao, Pizhong Qiao, A Critical Review on Buckling and Post-Buckling Analysis of Composite Structures, Fron. Aero. Eng., 2013, 2(3), 157-168.

[9] Fatima Zohra Kettaf, Mohammed Sid Ahmed Houari, Mohamed Benguediab, Abdelouahed Tounsi, Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model, Steel and Compos. Struct., 2013,15(4), 399-423. [WoS]

[10] Grover N., Singh B. N., Maiti D. K., Free vibration and buckling characteristics of laminated composite and sandwich plates implementing a secant function based shear deformation theory, Proceed. Instit. Mech. Eng., Part C: J. Mech. Eng. Sc, 2015, 229(3), 391-405. [WoS]

[11] Patel B.P., Ganapati M., Prasad K.R., Makhecha D.P., Dynamic stability of layered anisotropic composite plates resting on elastic foundation, Eng. Struct., 1999, 35, 345-355.

[12] Shen H.S., Zheng J.J., Huang X.L., Dynamic response of shear deformable plates under thermomechancial loadings, and resting on elastic foundation. Compos. Struct., 2003,60, 57-66. [Crossref]

[13] Setoodes A.R., Karmi G., Static, free vibration and buckling analysis of anisotropic thick laminated composite plates on distributed and point elastic supports using 3-D layer wise FEM, Eng. Struct., 2004, 26, 211-220. [Crossref]

[14] Jayachandran S.A., Vaidynathan C.V., Post critical behavior of biaxial compressed plate on elastic foundations, Comput. Struct., 1995,54(2), 239-246. [Crossref]

[15] Shen H.S., Williams F.W., Biaxial buckling and post buckling of composite laminated plates on two parameters elastic foundations, Comput. Struct., 1997, 63(6), 1177-1185. [Crossref] | Zbl 0899.73164

[16] Shen H.S., Post buckling of shear deformable laminated plates under biaxial compression and lateral pressure and resting on elastic foundation, Int. J. Mech. Scien., 2000, 42 (6), 1171-1195. [Crossref] | Zbl 0962.74022

[17] Shen H.S., Post buckling analysis of composite plates on two parameters elastic foundation, Int. J. Mech. Scien., 1995, 37 (12), 1307-1316. [Crossref]

[18] Xia X.K., Shen H.S., Nonlinear vibration and dynamic response of FGM plates with piezoelectric fiber reinforced composite actuators, Compos. Struct., 2009, 90, 254–262.

[19] Shen H.S., A comparison of buckling and post buckling behavior of FGM plates with piezoelectric fiber reinforced composite actuators, Compos. Struct., 2009, 91, 375–384.

[20] Shen H., Zheng Hong Zhu, Compressive and thermal post buckling behaviors of laminated plates with piezoelectric fiber reinforced composite actuators, Appli. Math. Model., 2011, 35(4), 1829–1845. [Crossref][WoS] | Zbl 1217.74051

[21] Naveen C., Singh B. N., Thermal buckling and post-buckling of laminated composite plates with sma fibers using layerwise theory. Int. J. Comput.l Meth. Engin. Sci. Mechan, 2009.10 (6), 423-429 | Zbl 1197.74041

[22] Panda S. K., Singh B. N., Thermal Post-buckling behaviour of laminated composite cylindrical/hyperboloid shallow shell panel using nonlinear finite element method by Compos. Struct., 2009,91(3), 366-374. [WoS]

[23] Chamis C.C., Simplified composite micromechanics equations for mechanical, thermal and moisture related properties. Engin. Guide to comp.mater. ASMInt.,Materials Park, Ohio, 1987, 3.8– 3.24.

[24] Chamis C.C., Sinclair J.H., Durability/life of fiber composites in hygrothermomechanical environments. Composite Materials: Testing and Design (Sixth Conf.) STP 787, ASTM, West Conshohocken, Pa., 1982, 498–512.

[25] Chandra R., Singh S.P., Gupta K., Micromechanical damping models for fiber-reinforced composites: A comparative study.Composites, 2002, Part A. 33, 787–796. [Crossref]

[26] Chao L.P., Shyu S.L., Nonlinear buckling of fiber reinforced composite plates under hygrothermal effects. J. Chinese Inst. Eng. 1996, 19, 657–667.

[27] Pandey R., Upadhyay A.K., Shukla K.K., Hygrothermoelastic post buckling response of laminated composite plates, J. Aeros. Engg., ASCE, 2010, 23(1), 1-13.

[28] Graham L.L., Siragy E.F., Stochastic finite element for elastic buckling of stiffened panels, ASCE J Eng. Mech., 2001, 127(1), 91-97. [Crossref]

[29] Onkar A.K., Upadhyay C.S., Yadav D., Stochastic finite element analysis buckling analysis of laminatedwith circular cutouts under uniaxial compression. Trans ASME J Appl. Mech. 2007, 74, 789–809.

[30] Verma V.K., Singh B.N., Thermal buckling of laminated composite plates with random geometric and material properties, Int. J.Struct. Stab. Dynam., 9(2), 2009, 187-211. [WoS][Crossref] | Zbl 1271.74105

[31] Lal A., Singh B. N., Thermal buckling response of laminated composite plate with random system properties, Int. J. Comput. Meth. 2009, 6(2), 447-471. [Crossref][WoS] | Zbl 1264.74063

[32] Lal A., Singh B.N., Kumar R., Effects of random system properties on the thermal buckling analysis of laminated composite plates, Comput. Struct., 2009, 87 (17-18), 1119. [Crossref][WoS]

[33] Singh B. N., Jibumon B., Thermal buckling of conical panel/shell embedded with and without piezoelectric layers with random material properties. Int. J. Crashworthiness, 2009, 14(1), 73-81.

[34] Kumar R., Patil H.S., Lal A., Hygrothermoelastic buckling response of laminated composite plates with random system properties:macromechanical and micromechanical model, J. Aerosp. Eng., 2012, 10.1061/(ASCE)AS.1943-5525.0000241, 04014123.

[35] Reddy J. N., A simple higher-order theory for laminated composite plates, J. Appl. Mech. 1984, 51, 745-752. [Crossref] | Zbl 0549.73062

[36] Kleiber M., Hien T.D., The stochastic finite element method, John Wiley and Sons, 1992. | Zbl 0902.73004

[37] Haldar A.,Mahadevan S., Reliability assessment using stochastic finite element analysis. John Willey and Sons, 2000.

[38] Gibson R. F., Principles of composite material mechanics, McGraw-Hill, 1994.

[39] Jones R. M., Mechanics of composite materials, McGraw-Hill, New York, 1975.