To determine fracture parameters of interfacial cracks in transverse isotropic magnetoelectroelastic composites, a displacement extrapolation formula was derived. The matrix-form formula can be applicable for both material components with arbitrary poling directions. The corresponding explicit expression of this formula was obtained for each poling direction normal to the crack plane. This displacement extrapolation formula is only related to the boundary quantities of the extended crack opening displacements across crack faces, which is convenient for numerical applications, especially for BEM. Meantime, an alternative extrapolation formula based on the path-independent J-integral and displacement ratios was presented which may be more adaptable for any domain-based numerical techniques like FEM. A numerical example was presented to show the correctness of these formulae.
@article{bwmeta1.element.doi-10_1515_cls-2015-0014, author = {Jun Lei and Pengbo Sun and Tinh Quoc Bui}, title = {Determination of fracture parameters for interface cracks in transverse isotropic magnetoelectroelastic composites}, journal = {Curved and Layered Structures}, volume = {2}, year = {2015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_cls-2015-0014} }
Jun Lei; Pengbo Sun; Tinh Quoc Bui. Determination of fracture parameters for interface cracks in transverse isotropic magnetoelectroelastic composites. Curved and Layered Structures, Tome 2 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_cls-2015-0014/
[1] Van Suchtelen J., Product properties: a new application of composite materials, Phillips Res. Rep., 1972, 27, 28-37.
[2] Nan C.W., Magnetoelectric effect in composite of piezoelectric and piezomagnetic phases, Phys. Rev. B, 1994, 50, 6082-6088.
[3] Hadjiloizi D.A., Kalamkarov A.L., Metti Ch., Georgiades A.V., Analysis of smart piezo-magneto-thermo-elastic composite and reinforced plates: Part I-model development, Curved and Layered Structures, 2014, 1, 11-31.
[4] Hadjiloizi D.A., Kalamkarov A.L., Metti Ch., Georgiades A.V., Analysis of smart piezo-magneto-thermo-elastic composite and reinforced plates: Part II-applications, Curved and Layered Structures, 2014, 1, 32-58.
[5] Ramirez F., Heyliger P.R., Pan E., Free vibration response of two-dimensional magneto-electro-elastic laminated plates, Journal of Sound and Vibration, 2006, 292, 626-644.
[6] Razavi S., Shooshtari A., Nonlinear free vibration of magnetoelectro-elastic rectangular plates, Composite Structures, 2015, 119, 377-384.
[7] Xin L., Hu Z., Free vibration of simply supported and multilayered magneto-electro-elastic, Composite Structures, 2015, 121, 344-350.
[8] Wang B.L., Mai Y.W., Crack tip field in piezoelectric/piezomagnetic media, Eur. J. Mech. A/Solids, 2003, 22, 591-602. | Zbl 1032.74641
[9] Hu K.Q., Li G.Q., Zhong Z., Fracture of a rectangular piezoelectromagnetic body, Mech. Res. Commun., 2006, 33, 482-492. | Zbl 1192.74323
[10] Wang B.L., Mai Y.W., Fracture of piezoelectromagnetic materials, Mech. Res. Commun., 2004, 31, 65-73. | Zbl 1045.74586
[11] Song Z.F., Sih G.C., Crack initiation behavior in magnetoelectroelastic composite under in-plane deformation, Theor. Appl. Frac. Mech., 2003, 39, 189-207.
[12] Tian W.Y., Gabbert U., Multiple crack interaction problem in magnetoelectroelastic solids, Eur. J. Mech. A/Solids, 2004, 23, 599-614.[Crossref] | Zbl 1062.74044
[13] Tian W.Y., Rajapakse R.K.N.D., Fracture analysis of magnetoelectroelastic solids by using path independent integrals, Int. J. Fract., 2005, 131, 311-335. | Zbl 1196.74217
[14] Wang B.L., Mai Y.W., Applicability of the crack-face electromagnetic boundary conditions for fracture of magnetoelectroelastic materials, Int. J. Solids Struct., 2007, 44, 387-398.[WoS] | Zbl 1178.74145
[15] Niraula O.P., Wang B.L., A magneto-electro-elastic material with a penny-shaped crack subjected to temperature loading, Acta Mech., 2006, 187, 151-168. | Zbl 1151.76586
[16] Zhao M.H., Yang F., Liu T., Analysis of a penny-shaped crack in a magneto-electro-elastic medium, Philos. Mag., 2006, 86, 4397-4416.
[17] Li R., Kardomateas G.A., The mode III interface crack in piezoelectro-magneto-elastic dissimilar bimaterials, J. Appl. Mech., 2006, 73, 220-227. | Zbl 1111.74509
[18] Rogowski B., Exact solution for an anti-plane interface crack between two dissimilar magneto-electro-elastic half-spaces, Smart Mater. Research, 2012, 78, 6190.
[19] Su R.K.L., Feng W.J., Fracture behavior of a bonded magnetoelectro-elastic rectangular plate with an interface crack, Arch. Appl. Mech., 2008, 78, 343-362.[WoS] | Zbl 1161.74477
[20] Wang B.L., Mai Y.W., Closed-form solution for an antiplane interface crack between two dissimilar magnetoelectroelastic layers, J. Appl. Mech., 2006, 73, 281-290. | Zbl 1111.74685
[21] Feng W.J., Li Y.S., Xu Z.H., Transient response of an interfacial crack between dissimilar magnetoelectroelastic layers under magnetoelectromechanical impact loadings, Mode-I problem, Int. J. Solids Struct., 2009, 46, 3346-3356.[WoS] | Zbl 1167.74547
[22] Wang B.L., Mai Y.W., Self-consistent analysis of coupled magnetoelectroelastic fracture. Theoretical investigation and finite element verification, Comput. Methods Appl. Mech. Engrg., 2007, 196, 2044-2054.[WoS] | Zbl 1173.74330
[23] Rojas-Díaz R., Sukumar N., Sáez A., García-Sánchez F., Fracture in magnetoelectroelastic materials using the extended finite element method, Int. J. Numer. Meth. Engng., 2011, 88, 1238-1259.[WoS] | Zbl 1242.74157
[24] Sladek J., Sladek V., Solek P., Pan E., Fracture analysis of cracks in magneto-electro-elastic solids by the MLPG, Comput. Mech., 2008, 42, 697-714.[WoS] | Zbl 1163.74564
[25] Garcia-Sanchez F., Rojas-Diaz R., Saez A., Zhang Ch., Fracture of magnetoelectroelastic composite materials using boundary element method (BEM), Theor. Appl. Fract. Mech., 2007, 47, 192-204.
[26] Wünsche M., Sáez A., García-Sánchez F., Zhang Ch., Transient dynamic crack analysis in linear magnetoelectroelastic solids by a hypersingular time-domain BEM, Eur. J. Mech. A/Solids, 2012, 32, 118-130.[WoS] | Zbl 1278.74183
[27] Huang G.Y., Wang B.L., Mai Y.W., Effect of Interfacial Cracks on the Effective Properties of Magnetoelectroelastic Composites. J. Intel. Mat. Syst. Str., 2009, 20, 963-968.[Crossref]
[28] Lei, J., Garcia-Sanchez F., Zhang Ch., Determination of dynamic intensity factors and time-domain BEM for interfacial cracks in anisotropic piezoelectric materials, Int. J. Solids Struct., 2013, 50, 1482-1493.[WoS]
[29] Lei J., Zhang Ch., On the generalized Barnett-Lothe tensors for anisotropic magnetoelectroelastic materials, Eur. J. Mech. A/Solids, 2014, 46, 12-21.[WoS]
[30] Bui Q.T., Zhang Ch., Analysis of generalized dynamic intensity factors in cracked magneto-electroelastic solids by the XFEM, Finite Elem. Anal. Des., 2013, 69, 19-36.
[31] Li Y., Viola E., Size effect investigation of a central interface crack between two bonded dissimilar materials, Composite Structures, 2013, 105, 90-107.
[32] Viola E., Tornabene F., Ferretti E., Fantuzzi N., GDQFEM numerical simulations of continuous media with cracks and discontinuities. CMES-Comp. Model. Eng., 2013, 94(4), 331-369.