Directional representation of data in Linear Discriminant Analysis
Jolanta Grala-Michalak
Biometrical Letters, Tome 52 (2015), p. 55-74 / Harvested from The Polish Digital Mathematics Library

Sometimes feature representations of measured individuals are better described by spherical coordinates than Cartesian ones. The author proposes to introduce a preprocessing step in LDA based on the arctangent transformation of spherical coordinates. This nonlinear transformation does not change the dimension of the data, but in combination with LDA it leads to a dimension reduction if the raw data are not linearly separated. The method is presented using various examples of real and artificial data.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:275953
@article{bwmeta1.element.doi-10_1515_bile-2015-0006,
     author = {Jolanta Grala-Michalak},
     title = {Directional representation of data in Linear Discriminant Analysis},
     journal = {Biometrical Letters},
     volume = {52},
     year = {2015},
     pages = {55-74},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_bile-2015-0006}
}
Jolanta Grala-Michalak. Directional representation of data in Linear Discriminant Analysis. Biometrical Letters, Tome 52 (2015) pp. 55-74. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_bile-2015-0006/

Aeberhard S., Coomans D., de Vel O. (1992): The performance of statistical pattern recognition methods in high dimensional settings. Tech. Rep. No 92-02, Dept. Of Computer Science and Depth. Of Mathematics and Statistics, James Cook University of North Queensland. | Zbl 0968.68204

Duchene L. (1987): A New Form of Discriminant Surfaces Using Polar Coordinates. Pattern Recognition 20(4): 437- 442.[Crossref]

Duchene L., Leclerq S. (1988): An Optimal Transformation for Discriminant and Principal Component Analysis. IEEE Trans. Pattern Analysis and Machine Intelligence 10(6): 978-983.[Crossref][WoS] | Zbl 0655.62064

Everitt B.S., Landau S., Leese M., Stahl D. (2011): Cluster Analysis. Wiley.

Hartigan J.A. (1975) Clustering Algorithms. New York, Wiley. | Zbl 0372.62040

http://ics.uci.edu/~mlearn/MLRepository.html (UCI Machine Learning Repository)

Krzyśko M., Wołyński W., Górecki T., Skorzybut M. (2008): Systemy uczące się. Rozpoznawanie wzorców, analiza skupień i redukcja wymiarowości, WNT, Warsaw. (In Polish)

Matsushima T., Marcus P.S. (1995): A Spectral Method for Polar Coordinates. Journal of Computational Physics 120: 365-374. | Zbl 0842.65051

Mardia K.V. (1972): Statistics of Directional Data. Academic Press, London. | Zbl 0244.62005

Mardia K.V., Jupp P.E. (2000): Directional Statistics. Wiley Series in Probability and Statistics. | Zbl 0935.62065

Rencher A.C., Christensen W.F. (2012): Methods of Multivariate Analysis, Third Edition. Wiley. | Zbl 1275.62011

Sajjanhar A., Lu G., Zhang D. (2007): A Composite Descriptor for Shape Retrieval. Proceedings of the 6th IEEE/ACIS International Conference on Computer and Information Science, IEEE Computer Society, Melbourne, Australia: 795-800.

Shawe-Taylor J., Cristianini N. (2004): Kernel Methods for Pattern Analysis. Cambridge University Press. | Zbl 0994.68074

Trendafilov N.T. (2013): From simple structure to sparse components: a review. Comput. Stat. (Online first article) 10.1007/500180-013-0434-5

Xiong T., Ye J., Cherkassky V. (2006): Kernel Uncorrelated and Orthogonal Discriminant Analysis: A Unified Approach. Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06).