Sometimes feature representations of measured individuals are better described by spherical coordinates than Cartesian ones. The author proposes to introduce a preprocessing step in LDA based on the arctangent transformation of spherical coordinates. This nonlinear transformation does not change the dimension of the data, but in combination with LDA it leads to a dimension reduction if the raw data are not linearly separated. The method is presented using various examples of real and artificial data.
@article{bwmeta1.element.doi-10_1515_bile-2015-0006, author = {Jolanta Grala-Michalak}, title = {Directional representation of data in Linear Discriminant Analysis}, journal = {Biometrical Letters}, volume = {52}, year = {2015}, pages = {55-74}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_bile-2015-0006} }
Jolanta Grala-Michalak. Directional representation of data in Linear Discriminant Analysis. Biometrical Letters, Tome 52 (2015) pp. 55-74. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_bile-2015-0006/
Aeberhard S., Coomans D., de Vel O. (1992): The performance of statistical pattern recognition methods in high dimensional settings. Tech. Rep. No 92-02, Dept. Of Computer Science and Depth. Of Mathematics and Statistics, James Cook University of North Queensland. | Zbl 0968.68204
Duchene L. (1987): A New Form of Discriminant Surfaces Using Polar Coordinates. Pattern Recognition 20(4): 437- 442.[Crossref]
Duchene L., Leclerq S. (1988): An Optimal Transformation for Discriminant and Principal Component Analysis. IEEE Trans. Pattern Analysis and Machine Intelligence 10(6): 978-983.[Crossref][WoS] | Zbl 0655.62064
Everitt B.S., Landau S., Leese M., Stahl D. (2011): Cluster Analysis. Wiley.
Hartigan J.A. (1975) Clustering Algorithms. New York, Wiley. | Zbl 0372.62040
http://ics.uci.edu/~mlearn/MLRepository.html (UCI Machine Learning Repository)
Krzyśko M., Wołyński W., Górecki T., Skorzybut M. (2008): Systemy uczące się. Rozpoznawanie wzorców, analiza skupień i redukcja wymiarowości, WNT, Warsaw. (In Polish)
Matsushima T., Marcus P.S. (1995): A Spectral Method for Polar Coordinates. Journal of Computational Physics 120: 365-374. | Zbl 0842.65051
Mardia K.V. (1972): Statistics of Directional Data. Academic Press, London. | Zbl 0244.62005
Mardia K.V., Jupp P.E. (2000): Directional Statistics. Wiley Series in Probability and Statistics. | Zbl 0935.62065
Rencher A.C., Christensen W.F. (2012): Methods of Multivariate Analysis, Third Edition. Wiley. | Zbl 1275.62011
Sajjanhar A., Lu G., Zhang D. (2007): A Composite Descriptor for Shape Retrieval. Proceedings of the 6th IEEE/ACIS International Conference on Computer and Information Science, IEEE Computer Society, Melbourne, Australia: 795-800.
Shawe-Taylor J., Cristianini N. (2004): Kernel Methods for Pattern Analysis. Cambridge University Press. | Zbl 0994.68074
Trendafilov N.T. (2013): From simple structure to sparse components: a review. Comput. Stat. (Online first article) 10.1007/500180-013-0434-5
Xiong T., Ye J., Cherkassky V. (2006): Kernel Uncorrelated and Orthogonal Discriminant Analysis: A Unified Approach. Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06).