In the present paper, we define a notion of an m2-topological space by introducing a count of openness of a multiset (mset in short) and study the properties of m2-subspaces, mgp-maps etc. Decomposition theorems involving m-topologies and m2-topologies are established. The behaviour of the functional image and functional preimage of an m2-topologies, the continuity of the identity mapping and a constant mapping in m2-topologies are also examined.
@article{bwmeta1.element.doi-10_1515_aupcsm-2017-0007, author = {Sk. Nazmul}, title = {On type-2 m-topological spaces}, journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica}, volume = {16}, year = {2017}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_aupcsm-2017-0007} }
Sk. Nazmul. On type-2 m-topological spaces. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Tome 16 (2017) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_aupcsm-2017-0007/