In this paper, we study the superstablity problem of the cosine and sine type functional equations: f(xσ(y)a)+f(xya)=2f(x)f(y) and f(xσ(y)a)−f(xya)=2f(x)f(y), where f : S → ℂ is a complex valued function; S is a semigroup; σ is an involution of S and a is a fixed element in the center of S.
@article{bwmeta1.element.doi-10_1515_aupcsm-2016-0010, author = {Fouad Lehlou and Mohammed Moussa and Ahmed Roukbi and Samir Kabbaj}, title = {On the superstability of the cosine and sine type functional equations}, journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica}, volume = {15}, year = {2016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_aupcsm-2016-0010} }
Fouad Lehlou; Mohammed Moussa; Ahmed Roukbi; Samir Kabbaj. On the superstability of the cosine and sine type functional equations. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Tome 15 (2016) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_aupcsm-2016-0010/