For an arbitrary triangle ABC and an integer n we define points Dn, En, Fn on the sides BC, CA, AB respectively, in such a manner that |AC|n|AB|n=|CDn||BDn|,|AB|n|BC|n=|AEn||CEn|,|BC|n|AC|n=|BFn||AFn|. Cevians ADn, BEn, CFn are said to be the Maneeals of order n. In this paper we discuss some properties of the Maneeals and related objects.
@article{bwmeta1.element.doi-10_1515_aupcsm-2016-0005, author = {Naga Vijay Krishna Dasari and Jakub Kabat}, title = {Several observations about Maneeals - a peculiar system of lines}, journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica}, volume = {15}, year = {2016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_aupcsm-2016-0005} }
Naga Vijay Krishna Dasari; Jakub Kabat. Several observations about Maneeals - a peculiar system of lines. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Tome 15 (2016) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_aupcsm-2016-0005/