Affine analogues of the Sasaki-Shchepetilov connection
Maria Robaszewska
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Tome 15 (2016), / Harvested from The Polish Digital Mathematics Library

For two-dimensional manifold M with locally symmetric connection ∇ and with ∇-parallel volume element vol one can construct a flat connection on the vector bundle TM ⊕ E, where E is a trivial bundle. The metrizable case, when M is a Riemannian manifold of constant curvature, together with its higher dimension generalizations, was studied by A.V. Shchepetilov [J. Phys. A: 36 (2003), 3893-3898]. This paper deals with the case of non-metrizable locally symmetric connection. Two flat connections on TM ⊕ (ℝ × M) and two on TM ⊕ (ℝ2 × M) are constructed. It is shown that two of those connections – one from each pair – may be identified with the standard flat connection in ℝN, after suitable local affine embedding of (M,∇) into ℝN.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:287082
@article{bwmeta1.element.doi-10_1515_aupcsm-2016-0004,
     author = {Maria Robaszewska},
     title = {Affine analogues of the Sasaki-Shchepetilov connection},
     journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
     volume = {15},
     year = {2016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_aupcsm-2016-0004}
}
Maria Robaszewska. Affine analogues of the Sasaki-Shchepetilov connection. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Tome 15 (2016) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_aupcsm-2016-0004/