On Orthogonally Additive Functions With Big Graphs
Karol Baron
Annales Mathematicae Silesianae, Tome 31 (2017), p. 57-62 / Harvested from The Polish Digital Mathematics Library

Let E be a separable real inner product space of dimension at least 2 and V be a metrizable and separable linear topological space. We show that the set of all orthogonally additive functions mapping E into V and having big graphs is dense in the space of all orthogonally additive functions from E into V with the Tychonoff topology.

Publié le : 2017-01-01
EUDML-ID : urn:eudml:doc:288498
@article{bwmeta1.element.doi-10_1515_amsil-2016-0016,
     author = {Karol Baron},
     title = {On Orthogonally Additive Functions With Big Graphs},
     journal = {Annales Mathematicae Silesianae},
     volume = {31},
     year = {2017},
     pages = {57-62},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_amsil-2016-0016}
}
Karol Baron. On Orthogonally Additive Functions With Big Graphs. Annales Mathematicae Silesianae, Tome 31 (2017) pp. 57-62. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_amsil-2016-0016/