Wild Primes of a Higher Degree Self-Equivalence of a Number Field
Alfred Czogała ; Beata Rothkegel ; Andrzej Sładek
Annales Mathematicae Silesianae, Tome 30 (2016), p. 17-38 / Harvested from The Polish Digital Mathematics Library

Let ℓ > 2 be a prime number. Let K be a number field containing a unique ℓ-adic prime and assume that its class is an ℓth power in the class group CK. The main theorem of the paper gives a sufficient condition for a finite set of primes of K to be the wild set of some Hilbert self-equivalence of K of degree ℓ.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:286741
@article{bwmeta1.element.doi-10_1515_amsil-2016-0008,
     author = {Alfred Czoga\l a and Beata Rothkegel and Andrzej S\l adek},
     title = {Wild Primes of a Higher Degree Self-Equivalence of a Number Field},
     journal = {Annales Mathematicae Silesianae},
     volume = {30},
     year = {2016},
     pages = {17-38},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_amsil-2016-0008}
}
Alfred Czogała; Beata Rothkegel; Andrzej Sładek. Wild Primes of a Higher Degree Self-Equivalence of a Number Field. Annales Mathematicae Silesianae, Tome 30 (2016) pp. 17-38. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_amsil-2016-0008/