Report of Meeting
Annales Mathematicae Silesianae, Tome 29 (2015), p. 151-165 / Harvested from The Polish Digital Mathematics Library
Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:276917
@article{bwmeta1.element.doi-10_1515_amsil-2015-0012,
     title = {Report of Meeting},
     journal = {Annales Mathematicae Silesianae},
     volume = {29},
     year = {2015},
     pages = {151-165},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_amsil-2015-0012}
}
 (éd.). Report of Meeting. Annales Mathematicae Silesianae, Tome 29 (2015) pp. 151-165. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_amsil-2015-0012/

[1] Baczyński M., Jayaram B., Fuzzy implications, Springer, Berlin, 2008. | Zbl 1147.03012

[2] Bustince H., Campión M.J., Fernández F.J., Induráin E., Ugarte M.D., New trends on the permutability equation, Aequationes Math. 88 (2014), 211–232.[WoS] | Zbl 1305.39017

[3] Jayaram B., Baczyński M., Mesiar R., R-implications and the exchange principle: the case of border continuous t-norms, Fuzzy Sets and Systems 224 (2013), 93–105. | Zbl 1284.03183

[4] Klement E.P., Mesiar R., Pap E., Triangular Norms. Kluwer, Dordrecht, 2000. | Zbl 0972.03002

[5] Baron K., On the convergence in law of iterates of random-valued functions, Aust. J. Math. Anal. Appl. 6 (2009), no. 1, Art. 3, 9 pp.

[6] Kuczma M., Choczewski B., Ger R., Iterative functional equations, Encyclopedia of Mathematics and its Applications 32, Cambridge University Press, Cambridge, 1990. | Zbl 0703.39005

[7] Boros Z., Páles Zs., ℚ-subdifferential of Jensen-convex functions, J. Math. Anal. Appl. 321 (2006), 99–113. | Zbl 1099.49015

[8] Ger R., Kominek Z., Boundedness and continuity of additive and convex functionals, Aequationes Math. 37 (1989), no. 2–3, 252–258. | Zbl 0702.46004

[9] Nikodem K., Páles Zs., On t-convex functions, Real Anal. Exchange 29 (2003), no. 1, 219–228.

[10] Lewicki M., Olbryś A., On nonsymmetric t-convex functions, Math. Inequal. Appl. 17 (2014), no. 1, 95–100. | Zbl 1293.39012

[11] Kuhn N., A note on t-convex functions, in: General Inequalities, 4 (Oberwolfach, 1983) (W. Walter ed.), Internat. Ser. Numer. Math., vol. 71, Birkhäuser, Basel, 1984, pp. 269–276.

[12] Kiss T., Separation theorems for generalized convex functions (hu), Master thesis, 2014, Supervisor: Dr. Zsolt Páles.

[13] Badora R., Chmieliński J., Decomposition of mappings approximately inner product preserving, Nonlinear Analysis 62 (2005), 1015–1023. | Zbl 1091.39005

[14] Chmieliński J., Orthogonality equation with two unknown functions, Manuscript. | Zbl 1342.39023

[15] Gajda Z., Kominek Z., On separations theorems for subadditive and superadditive functionals, Studia Math. 100 (1991), 25–38. | Zbl 0739.39014

[16] Ger R., On functional inequalities stemming from stability questions, in: General Inequalities 6, Internat. Ser. Numer. Math. 103, Birkhäuser, Basel, 1992, pp. 227–240. | Zbl 0770.39007

[17] Veselý L., Zajiček L., Delta-convex mappings between Banach spaces and applications, Dissertationes Math. 289 (1989), 52 pp. | Zbl 0685.46027

[18] Shulman E., Group representations and stability of functional equations, J. London Math. Soc. 54 (1996), 111–120.[Crossref] | Zbl 0861.39020

[19] Fechner W., Sikorska J., On the stability of orthogonal additivity, Bull. Polish Acad. Sci. Math. 58 (2010), 23–30. | Zbl 1197.39016

[20] Ger R., Sikorska J., Stability of the orthogonal additivity, Bull. Polish Acad. Sci. Math. 43 (1995), 143–151. | Zbl 0833.39007

[21] Sikorska J., Set-valued orthogonal additivity, Set-Valued Var. Anal. 23 (2015), 547–557. | Zbl 1328.39039

[22] Levin V.I., Stechkin S.B., Inequalities, Amer. Math. Soc. Transl. (2) 14 (1960), 1–29.

[23] Szostok T., Ohlin’s lemma and some inequalities of the Hermite-Hadamard type, Aequationes Math. 89 (2015), 915–926. | Zbl 1326.26024