Linear Dependence Of Powers Of Linear Forms
Andrzej Sładek
Annales Mathematicae Silesianae, Tome 29 (2015), p. 131-138 / Harvested from The Polish Digital Mathematics Library

The main goal of the paper is to examine the dimension of the vector space spanned by powers of linear forms. We also find a lower bound for the number of summands in the presentation of zero form as a sum of d-th powers of linear forms.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:276939
@article{bwmeta1.element.doi-10_1515_amsil-2015-0010,
     author = {Andrzej S\l adek},
     title = {Linear Dependence Of Powers Of Linear Forms},
     journal = {Annales Mathematicae Silesianae},
     volume = {29},
     year = {2015},
     pages = {131-138},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_amsil-2015-0010}
}
Andrzej Sładek. Linear Dependence Of Powers Of Linear Forms. Annales Mathematicae Silesianae, Tome 29 (2015) pp. 131-138. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_amsil-2015-0010/

[1] Białynicki-Birula A., Schinzel A., Representations of multivariate polynomials by sums of univariate polynomials in linear forms, Colloq. Math. 112 (2008), 201–233. [Corrigendum. Colloq. Math. 125 (2011), 139.][Crossref] | Zbl 1154.11011

[2] Chlebowicz A., Wołowiec-Musiał M., Forms with a unique representation as a sum of powers of linear forms, Tatra Mt. Math. Publ. 32 (2005), 33–39. | Zbl 1150.11417

[3] Reznick B., Sums of even powers of real linear forms, Memoirs Amer. Math. Soc. 96 (1992), no. 463.

[4] Reznick B., Patterns of dependence among powers of polynomials, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 60 (2003), 101–121. | Zbl 1037.11022