Let [...] f(z)=∑n=0∞αnzn be a function defined by power series with complex coefficients and convergent on the open disk D (0, R) ⊂ ℂ, R > 0. For any x, y ∈ ℬ, a Banach algebra, with ‖x‖, ‖y‖ < R we show among others that [...] ‖f(y)−f(x)‖≤‖y−x‖∫01fa′(‖(1−t)x+ty‖)dt where [...] fa(z)=∑n=0∞|αn| zn . Inequalities for the commutator such as [...] ‖f(x)f(y)−f(y)f(x)‖≤2fa(M)fa′(M)‖y−x‖, if ‖x‖, ‖y‖ ≤ M < R, as well as some inequalities of Hermite–Hadamard type are also provided.
@article{bwmeta1.element.doi-10_1515_amsil-2015-0006, author = {Sever S. Dragomir}, title = {Inequalities Of Lipschitz Type For Power Series In Banach Algebras}, journal = {Annales Mathematicae Silesianae}, volume = {29}, year = {2015}, pages = {61-83}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_amsil-2015-0006} }
Sever S. Dragomir. Inequalities Of Lipschitz Type For Power Series In Banach Algebras. Annales Mathematicae Silesianae, Tome 29 (2015) pp. 61-83. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_amsil-2015-0006/
[1] Azpeitia A.G., Convex functions and the Hadamard inequality, Rev. Colombiana Mat. 28 (1994), no. 1, 7–12. | Zbl 0832.26015
[2] Bhatia R., Matrix analysis, Springer-Verlag, New York, 1997. | Zbl 0863.15001
[3] Cheung W.-S., Dragomir S.S., Vector norm inequalities for power series of operators in Hilbert spaces, Tbilisi Math. J. 7 (2014), no. 2, 21–34. | Zbl 1320.47013
[4] Dragomir S.S., Cho Y.J., Kim S.S., Inequalities of Hadamard’s type for Lipschitzian mappings and their applications, J. Math. Anal. Appl. 245 (2000), no. 2, 489–501. | Zbl 0956.26015
[5] Dragomir S.S., A mapping in connection to Hadamard’s inequalities, Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. 128 (1991), 17–20. | Zbl 0747.26015
[6] Dragomir S.S., Two mappings in connection to Hadamard’s inequalities, J. Math. Anal. Appl. 167 (1992), 49–56. | Zbl 0758.26014
[7] Dragomir S.S., On Hadamard’s inequalities for convex functions, Math. Balkanica 6 (1992), 215–222. | Zbl 0834.26010
[8] Dragomir S.S., An inequality improving the second Hermite–Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3 (2002), no. 3, Art. 35. | Zbl 0995.26009
[9] Dragomir S.S., Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc. 74 (2006), 471–476.[Crossref] | Zbl 1113.26021
[10] Dragomir S.S., Gomm I., Bounds for two mappings associated to the Hermite–Hadamard inequality, Aust. J. Math. Anal. Appl. 8 (2011), Art. 5, 9 pp. | Zbl 1236.26020
[11] Dragomir S.S., Gomm I., Some new bounds for two mappings related to the Hermite–Hadamard inequality for convex functions, Numer. Algebra Cont Optim. 2 (2012), no. 2, 271–278. | Zbl 06082538
[12] Dragomir S.S., Milośević D.S., Sándor J., On some refinements of Hadamard’s inequalities and applications, Univ. Belgrad, Publ. Elek. Fak. Sci. Math. 4 (1993), 21–24.
[13] Dragomir S.S., Pearce C.E.M., Selected topics on Hermite–Hadamard inequalities and applications, RGMIA Monographs, 2000. Available at
[14] Guessab A., Schmeisser G., Sharp integral inequalities of the Hermite-Hadamard type, J. Approx. Theory 115 (2002), no. 2, 260–288. | Zbl 1012.26013
[15] Kilianty E., Dragomir S.S., Hermite–Hadamard’s inequality and the p-HH-norm on the Cartesian product of two copies of a normed space, Math. Inequal. Appl. 13 (2010), no. 1, 1–32. | Zbl 1183.26025
[16] Matić M., Pečarić J., Note on inequalities of Hadamard’s type for Lipschitzian mappings, Tamkang J. Math. 32 (2001), no. 2, 127–130. | Zbl 0993.26019
[17] Merkle M., Remarks on Ostrowski’s and Hadamard’s inequality, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 10 (1999), 113–117. | Zbl 0946.26016
[18] Mikusiński J., The Bochner integral, Birkhäuser Verlag, Basel, 1978. | Zbl 0369.28010
[19] Pearce C.E.M., Rubinov A.M., P-functions, quasi-convex functions, and Hadamard type inequalities, J. Math. Anal. Appl. 240 (1999), no. 1, 92–104. | Zbl 0939.26009
[20] Pečarić J., Vukelić A., Hadamard and Dragomir-Agarwal inequalities, the Euler formulae and convex functions, in: Functional equations, inequalities and applications, Kluwer Acad. Publ., Dordrecht, 2003, pp. 105–137. | Zbl 1067.26021
[21] Toader G., Superadditivity and Hermite–Hadamard’s inequalities, Studia Univ. Babeş-Bolyai Math. 39 (1994), no. 2, 27–32. | Zbl 0868.26012
[22] Yang G.-S., Hong M.-C., A note on Hadamard’s inequality, Tamkang J. Math. 28 (1997), no. 1, 33–37. | Zbl 0880.26019
[23] Yang G.-S., Tseng K.-L., On certain integral inequalities related to Hermite–Hadamard inequalities, J. Math. Anal. Appl. 239 (1999), no. 1, 180–187. | Zbl 0939.26010