In this paper, we investigate the general solution and Hyers–Ulam–Rassias stability of a new mixed type of additive and quintic functional equation of the form [...] f(3x+y)−5f(2x+y)+f(2x−y)+10f(x+y)−5f(x−y)=10f(y)+4f(2x)−8f(x) in the set of real numbers.
@article{bwmeta1.element.doi-10_1515_amsil-2015-0004, author = {Abasalt Bodaghi and Pasupathi Narasimman and Krishnan Ravi and Behrouz Shojaee}, title = {Mixed Type Of Additive And Quintic Functional Equations}, journal = {Annales Mathematicae Silesianae}, volume = {29}, year = {2015}, pages = {35-50}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_amsil-2015-0004} }
Abasalt Bodaghi; Pasupathi Narasimman; Krishnan Ravi; Behrouz Shojaee. Mixed Type Of Additive And Quintic Functional Equations. Annales Mathematicae Silesianae, Tome 29 (2015) pp. 35-50. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_amsil-2015-0004/
[1] Aoki T., On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan. 2 (1950), 64–66.[Crossref] | Zbl 0040.35501
[2] Bodaghi A., Quintic functional equations in non-Archimedean normed spaces, J. Math. Extension 9 (2015), no. 3, 51–63.
[3] Bodaghi A., Moosavi S.M., Rahimi H., The generalized cubic functional equation and the stability of cubic Jordan *-derivations, Ann. Univ. Ferrara 59 (2013), 235–250.[Crossref] | Zbl 1306.39017
[4] Cădariu L., Radu V., Fixed points and the stability of quadratic functional equations, An. Univ. Timişoara, Ser. Mat. Inform. 41 (2003), 25–48. | Zbl 1103.39304
[5] Cădariu L., Radu V., On the stability of the Cauchy functional equation: A fixed point approach, Grazer Math. Ber. 346 (2004), 43–52. | Zbl 1060.39028
[6] Czerwik S., On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg. 62 (1992), 59–64.[Crossref] | Zbl 0779.39003
[7] Hyers D.H., On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA. 27 (1941), 222–224.[Crossref] | Zbl 0061.26403
[8] Hyers D.H., Isac G., Rassias Th.M., Stability of functional equations in several variables, Birkhauser, Boston, 1998. | Zbl 0907.39025
[9] Jung S.-M., Hyers–Ulam–Rassias stability of functional equations in nonlinear analysis, Springer, New York, 2011. | Zbl 1221.39038
[10] Kannappan P., Functional equations and inequalities with applications, Springer, New York, 2009. | Zbl 1178.39032
[11] Najati A., Moghimi M.B., Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl. 337 (2008), 339–415. | Zbl 1127.39055
[12] Park C., Cui J., Eshaghi Gordji M., Orthogonality and quintic functional equations, Acta Math. Sinica, English Series 29 (2013), 1381–1390.[Crossref] | Zbl 1275.39019
[13] Rassias J.M., On approximation of approximately linear mappings by linear mapping, J. Funct. Anal. 46 (1982), no. 1, 126–130.[Crossref] | Zbl 0482.47033
[14] Rassias J.M., On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math. (2) 108 (1984), no. 4, 445–446. | Zbl 0599.47106
[15] Rassias Th.M., On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.[Crossref]
[16] Rassias Th.M., Brzdęk J., Functional equations in mathematical analysis, Springer, New York, 2012.
[17] Ulam S.M., Problems in modern mathematics, Chapter VI, Science Ed., Wiley, New York, 1940.
[18] Xu T.Z., Rassias J.M., Rassias M.J., Xu W.X., A fixed point approach to the stability of quintic and sextic functional equations in quasi-β-normed spaces, J. Inequal. Appl. (2010), Article ID 423231, 23 pp, doi:10.1155/2010/423231.[Crossref] | Zbl 1219.39020