Mixed Type Of Additive And Quintic Functional Equations
Abasalt Bodaghi ; Pasupathi Narasimman ; Krishnan Ravi ; Behrouz Shojaee
Annales Mathematicae Silesianae, Tome 29 (2015), p. 35-50 / Harvested from The Polish Digital Mathematics Library

In this paper, we investigate the general solution and Hyers–Ulam–Rassias stability of a new mixed type of additive and quintic functional equation of the form [...] f(3x+y)−5f(2x+y)+f(2x−y)+10f(x+y)−5f(x−y)=10f(y)+4f(2x)−8f(x) f3x+y-5f2x+y+f2x-y+10fx+y-5fx-y=10fy+4f2x-8fx in the set of real numbers.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:276950
@article{bwmeta1.element.doi-10_1515_amsil-2015-0004,
     author = {Abasalt Bodaghi and Pasupathi Narasimman and Krishnan Ravi and Behrouz Shojaee},
     title = {Mixed Type Of Additive And Quintic Functional Equations},
     journal = {Annales Mathematicae Silesianae},
     volume = {29},
     year = {2015},
     pages = {35-50},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_amsil-2015-0004}
}
Abasalt Bodaghi; Pasupathi Narasimman; Krishnan Ravi; Behrouz Shojaee. Mixed Type Of Additive And Quintic Functional Equations. Annales Mathematicae Silesianae, Tome 29 (2015) pp. 35-50. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_amsil-2015-0004/

[1] Aoki T., On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan. 2 (1950), 64–66.[Crossref] | Zbl 0040.35501

[2] Bodaghi A., Quintic functional equations in non-Archimedean normed spaces, J. Math. Extension 9 (2015), no. 3, 51–63.

[3] Bodaghi A., Moosavi S.M., Rahimi H., The generalized cubic functional equation and the stability of cubic Jordan *-derivations, Ann. Univ. Ferrara 59 (2013), 235–250.[Crossref] | Zbl 1306.39017

[4] Cădariu L., Radu V., Fixed points and the stability of quadratic functional equations, An. Univ. Timişoara, Ser. Mat. Inform. 41 (2003), 25–48. | Zbl 1103.39304

[5] Cădariu L., Radu V., On the stability of the Cauchy functional equation: A fixed point approach, Grazer Math. Ber. 346 (2004), 43–52. | Zbl 1060.39028

[6] Czerwik S., On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg. 62 (1992), 59–64.[Crossref] | Zbl 0779.39003

[7] Hyers D.H., On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA. 27 (1941), 222–224.[Crossref] | Zbl 0061.26403

[8] Hyers D.H., Isac G., Rassias Th.M., Stability of functional equations in several variables, Birkhauser, Boston, 1998. | Zbl 0907.39025

[9] Jung S.-M., Hyers–Ulam–Rassias stability of functional equations in nonlinear analysis, Springer, New York, 2011. | Zbl 1221.39038

[10] Kannappan P., Functional equations and inequalities with applications, Springer, New York, 2009. | Zbl 1178.39032

[11] Najati A., Moghimi M.B., Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl. 337 (2008), 339–415. | Zbl 1127.39055

[12] Park C., Cui J., Eshaghi Gordji M., Orthogonality and quintic functional equations, Acta Math. Sinica, English Series 29 (2013), 1381–1390.[Crossref] | Zbl 1275.39019

[13] Rassias J.M., On approximation of approximately linear mappings by linear mapping, J. Funct. Anal. 46 (1982), no. 1, 126–130.[Crossref] | Zbl 0482.47033

[14] Rassias J.M., On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math. (2) 108 (1984), no. 4, 445–446. | Zbl 0599.47106

[15] Rassias Th.M., On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.[Crossref]

[16] Rassias Th.M., Brzdęk J., Functional equations in mathematical analysis, Springer, New York, 2012.

[17] Ulam S.M., Problems in modern mathematics, Chapter VI, Science Ed., Wiley, New York, 1940.

[18] Xu T.Z., Rassias J.M., Rassias M.J., Xu W.X., A fixed point approach to the stability of quintic and sextic functional equations in quasi-β-normed spaces, J. Inequal. Appl. (2010), Article ID 423231, 23 pp, doi:10.1155/2010/423231.[Crossref] | Zbl 1219.39020