Isoperimetric Symmetry Breaking: a Counterexample to a Generalized Form of the Log-Convex Density Conjecture
Frank Morgan
Analysis and Geometry in Metric Spaces, Tome 4 (2016), / Harvested from The Polish Digital Mathematics Library

We give an example of a smooth surface of revolution for which all circles about the origin are strictly stable for fixed area but small isoperimetric regions are nearly round discs away from the origin.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:287107
@article{bwmeta1.element.doi-10_1515_agms-2016-0014,
     author = {Frank Morgan},
     title = {Isoperimetric Symmetry Breaking: a Counterexample to a Generalized Form of the Log-Convex Density Conjecture},
     journal = {Analysis and Geometry in Metric Spaces},
     volume = {4},
     year = {2016},
     zbl = {1355.53005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_agms-2016-0014}
}
Frank Morgan. Isoperimetric Symmetry Breaking: a Counterexample to a Generalized Form of the Log-Convex Density Conjecture. Analysis and Geometry in Metric Spaces, Tome 4 (2016) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_agms-2016-0014/