It is shown that every bi-Lipschitz bijection from Z to itself is at a bounded L1 distance from either the identity or the reflection.We then comment on the group-theoretic properties of the action of bi-Lipschitz bijections.
@article{bwmeta1.element.doi-10_1515_agms-2015-0018, author = {Itai Benjamini and Alexander Shamov}, title = {Bi-Lipschitz Bijections of Z}, journal = {Analysis and Geometry in Metric Spaces}, volume = {3}, year = {2015}, zbl = {1325.26011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_agms-2015-0018} }
Itai Benjamini; Alexander Shamov. Bi-Lipschitz Bijections of Z. Analysis and Geometry in Metric Spaces, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_agms-2015-0018/
[1] Dmitri Burago, Yuri Burago, and Sergei Ivanov, A Course in Metric Geometry, Graduate Studies inMathematics, 33. American Mathematical Society (2001).
[2] Kate Juschenko and Nicolas Monod, Cantor systems, piecewise translations and simple amenable groups. Annals ofMathematics 2 (2013), 775–787. [WoS] | Zbl 1283.37011
[3] Kate Juschenko and Mikael de la Salle, Invariant means for the wobbling group. Bull. Belg. Math. Soc. Simon Stevin 22 (2015), no. 2, 281–290. | Zbl 1322.43001