BiLipschitz Decomposition of Lipschitz Maps between Carnot Groups
Sean Li
Analysis and Geometry in Metric Spaces, Tome 3 (2015), / Harvested from The Polish Digital Mathematics Library

Let f : G → H be a Lipschitz map between two Carnot groups. We show that if B is a ball of G, then there exists a subset Z ⊂ B, whose image in H under f has small Hausdorff content, such that BZcan be decomposed into a controlled number of pieces, the restriction of f on each of which is quantitatively biLipschitz. This extends a result of [14], which proved the same result, but with the restriction that G has an appropriate discretization. We provide an example of a Carnot group not admitting such a discretization.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:271760
@article{bwmeta1.element.doi-10_1515_agms-2015-0014,
     author = {Sean Li},
     title = {BiLipschitz Decomposition of Lipschitz Maps between Carnot Groups},
     journal = {Analysis and Geometry in Metric Spaces},
     volume = {3},
     year = {2015},
     zbl = {1331.53055},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_agms-2015-0014}
}
Sean Li. BiLipschitz Decomposition of Lipschitz Maps between Carnot Groups. Analysis and Geometry in Metric Spaces, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_agms-2015-0014/

[1] E. Breuillard. Geometry of locally compact groups of polynomial growth and shape of large balls, 2007. arXiv:0704.0095. | Zbl 1310.22005

[2] M. Christ. A T(b) theorem with remarks on analytic capacity and the Cauchy integral. Colloq.Math., 60/61(2):601–628, 1990. | Zbl 0758.42009

[3] G. David. Morceaux de graphes Lipschitziens et intégrales singulières sur un surface. Rev. Mat. Iberoam., 4(1):73–114, 1988. [Crossref] | Zbl 0696.42011

[4] G. David. Wavelets and singular integrals on curves and surfaces, volume 1465 of Lecture Notes in Mathematics. Springer- Verlag, 1991.

[5] G. David and S. Semmes. Quantitative rectifiability and Lipschitz mappings. Trans. Amer. Math. Soc., 337(2):855–889, 1993. | Zbl 0792.49029

[6] G.C. David. Bi-Lipschitz pieces between manifolds. Rev. Mat. Iberoam. To appear. | Zbl 1342.28007

[7] Y. Guivarc’h. Croissance polynômiale et périodes des fonctions harmoniques. Bull. Sc. Math. France, 101:353–379, 1973. | Zbl 0294.43003

[8] J. Heinonen and S. Semmes. Thirty-three yes or no questions about mappings, measures, and metrics. Conform. Geom. Dyn., 1:1–12, 1997. [Crossref] | Zbl 0885.00006

[9] P. Jones. Lipschitz and bi-Lipschitz functions. Rev. Mat. Iberoam., 4(1):115–121, 1988. [Crossref] | Zbl 0782.26007

[10] E. Le Donne. A metric characterization of Carnot groups. Proc. Amer. Math. Soc., 132:845–849, 2015. | Zbl 1307.53027

[11] E. Le Donne, S. Li, and T. Rajala. Ahlfors-regular distances on the Heisenberg group without biLipschitz pieces, 2015. Preprint.

[12] S. Li. Coarse differentiation and quantitative nonembeddability for Carnot groups. J. Funct. Anal., 266:4616–4704, 2014. [WoS] | Zbl 1311.46021

[13] V. Magnani. Differentiability and area formula on stratified Lie groups. Houston J. Math., 27(2):297–323, 2001. | Zbl 0983.22009

[14] W. Meyerson. Lipschitz and bilipschitz maps on Carnot groups. Pac. J. Math, 263(1):143–170, 2013. [WoS] | Zbl 1295.43009

[15] R. Montgomery. A tour of sub-Riemannian geometries, their geodesics and applications, volume 91 of Mathematical Surveys and Monographs. American Mathematical Society, 2002.

[16] P. Pansu. Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. Ann.Math. (2), 129(1):1– 60, 1989. | Zbl 0678.53042

[17] R. Schul. Ahlfors-regular curves in metric spaces. Ann. Acad. Sci. Fenn. Math., 32:437–460, 2007. | Zbl 1122.28006

[18] R. Schul. Bi-Lipschitz decomposition of Lipschitz functions into a metric space. Rev. Mat. Iberoam., 25(2):521–531, 2009. [Crossref] | Zbl 1228.28004