The p-Royden and p-Harmonic Boundaries for Metric Measure Spaces
Marcello Lucia ; Michael J. Puls
Analysis and Geometry in Metric Spaces, Tome 3 (2015), / Harvested from The Polish Digital Mathematics Library

Let p be a real number greater than one and let X be a locally compact, noncompact metric measure space that satisfies certain conditions. The p-Royden and p-harmonic boundaries of X are constructed by using the p-Royden algebra of functions on X and a Dirichlet type problem is solved for the p-Royden boundary. We also characterize the metric measure spaces whose p-harmonic boundary is empty.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:270810
@article{bwmeta1.element.doi-10_1515_agms-2015-0008,
     author = {Marcello Lucia and Michael J. Puls},
     title = {The p-Royden and p-Harmonic Boundaries for Metric Measure Spaces},
     journal = {Analysis and Geometry in Metric Spaces},
     volume = {3},
     year = {2015},
     zbl = {1317.31021},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_agms-2015-0008}
}
Marcello Lucia; Michael J. Puls. The p-Royden and p-Harmonic Boundaries for Metric Measure Spaces. Analysis and Geometry in Metric Spaces, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_agms-2015-0008/

[1] Anders Björn and Jana Björn. Nonlinear potential theory onmetric spaces, volume17 ofEMS Tracts inMathematics. European Mathematical Society (EMS), Zürich, 2011. | Zbl 1231.31001

[2] Moses Glasner and Richard Katz. The Royden boundary of a Riemannian manifold. Illinois J. Math., 14:488–495, 1970. | Zbl 0195.11601

[3] Vladimir Gol0dshtein and Marc Troyanov. Axiomatic theory of Sobolev spaces. Expo. Math., 19(4):289–336, 2001. | Zbl 1006.46023

[4] Daniel Hansevi. The obstacle and Dirichlet problems associated with p-harmonic functions in unbounded sets in Rn and metric spaces. arXiv: 1311.5955, 2013.

[5] Ilkka Holopainen, Urs Lang, and Aleksi Vähäkangas. Dirichlet problem at infinity on Gromov hyperbolic metric measure spaces. Math. Ann., 339(1):101–134, 2007. [WoS] | Zbl 1159.53019

[6] Yong Hah Lee. Rough isometry and energy finite solutions of elliptic equations on Riemannian manifolds. Math. Ann., 318(1):181–204, 2000. | Zbl 0968.58018

[7] Yong Hah Lee. Rough isometry and p-harmonic boundaries of complete Riemannianmanifolds. Potential Anal., 23(1):83–97, 2005. | Zbl 1082.31005

[8] Michael J. Puls. Graphs of bounded degree and the p-harmonic boundary. Pacific J. Math., 248(2):429–452, 2010. | Zbl 1228.43004

[9] H. L. Royden. On the ideal boundary of a Riemann surface. In Contributions to the theory of Riemann surfaces, Annals of Mathematics Studies, no. 30, pages 107–109. Princeton University Press, Princeton, N. J., 1953. | Zbl 0053.05102

[10] L. Sario and M. Nakai. Classification theory of Riemann surfaces. Die Grundlehren der mathematischen Wissenschaften, Band 164. Springer-Verlag, New York, 1970. | Zbl 0199.40603

[11] Nageswari Shanmugalingam. Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoamericana, 16(2):243–279, 2000. | Zbl 0974.46038

[12] Nageswari Shanmugalingam. Some convergence results for p-harmonic functions on metric measure spaces. Proc. London Math. Soc. (3), 87(1):226–246, 2003. | Zbl 1034.31006

[13] Stephen Willard. General topology. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970. | Zbl 1052.54001

[14] Shing Tung Yau. Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math., 28:201–228, 1975. | Zbl 0291.31002