Gluing Hyperconvex Metric Spaces
Benjamin Miesch
Analysis and Geometry in Metric Spaces, Tome 3 (2015), / Harvested from The Polish Digital Mathematics Library

We investigate how to glue hyperconvex (or injective) metric spaces such that the resulting space remains hyperconvex. We give two new criteria, saying that on the one hand gluing along strongly convex subsets and on the other hand gluing along externally hyperconvex subsets leads to hyperconvex spaces. Furthermore, we show by an example that these two cases where gluing works are opposed and cannot be combined.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:271074
@article{bwmeta1.element.doi-10_1515_agms-2015-0007,
     author = {Benjamin Miesch},
     title = {Gluing Hyperconvex Metric Spaces},
     journal = {Analysis and Geometry in Metric Spaces},
     volume = {3},
     year = {2015},
     zbl = {1321.54053},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_agms-2015-0007}
}
Benjamin Miesch. Gluing Hyperconvex Metric Spaces. Analysis and Geometry in Metric Spaces, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_agms-2015-0007/

[1] N. Aronszajn and P. Panitchpakdi, Extension of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956), 405–439. | Zbl 0074.17802

[2] Jean-Bernard Baillon, Nonexpansive mapping and hyperconvex spaces, Fixed point theory and its applications (Berkeley, CA, 1986), Contemp. Math., vol. 72, Amer. Math. Soc., Providence, RI, 1988, pp. 11–19.

[3] Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften | Zbl 0988.53001

[Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999.

[4] R. Espínola and M. A. Khamsi, Introduction to hyperconvex spaces, Handbook of metric fixed point theory, Kluwer Acad. Publ., Dordrecht, 2001, pp. 391–435. | Zbl 1029.47002

[5] Jie HuaMai and Yun Tang, An injective metrization for collapsible polyhedra, Proc. Amer.Math. Soc. 88 (1983), no. 2, 333–337. [Crossref] | Zbl 0516.54027

[6] B. Miesch, Injective Metrics on Cube Complexes, ArXiv e-prints (2014).

[7] Arvin Moezzi, The injective hull of hyperbolic groups, Ph.D. thesis, ETH Zürich, 2010.

[8] Bozena Piatek, On the gluing of hyperconvexmetrics and diversities, Ann. Univ. Paedagog. Crac. Stud.Math. 13 (2014), 65–76.