We provide a machinery for transferring some properties of metrizable ANR-spaces to metrizable LCn-spaces. As a result, we show that for completely metrizable spaces the properties ALCn, LCn and WLCn coincide to each other. We also provide the following spectral characterizations of ALCn and celllike compacta: A compactum X is ALCn if and only if X is the limit space of a σ-complete inverse system S = {Xα , pβ α , α < β < τ} consisting of compact metrizable LCn-spaces Xα such that all bonding projections pβα, as a well all limit projections pα, are UVn-maps. A compactum X is a cell-like (resp., UVn) space if and only if X is the limit space of a σ-complete inverse system consisting of cell-like (resp., UVn) metrizable compacta.
@article{bwmeta1.element.doi-10_1515_agms-2015-0006, author = {V. Valov}, title = {Locallyn-Connected Compacta and UV n -Maps}, journal = {Analysis and Geometry in Metric Spaces}, volume = {3}, year = {2015}, zbl = {1325.54007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_agms-2015-0006} }
V. Valov. Locallyn-Connected Compacta and UV n -Maps. Analysis and Geometry in Metric Spaces, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_agms-2015-0006/
[1] P. Bacon, Extending a complete metric, Amer. Math. Monthly 75 (1968) 642-643. | Zbl 0159.52603
[2] S. Bogatyi and Ju. Smirnov, Approximation by polyhedra and factorization theorems for ANR-bicompacta. Fund. Math. 87 (1975), no. 3, 195–205 (in Russian). | Zbl 0305.54012
[3] A. Chigogidze, Inverse spectra, North-Holland Math. Library 53 (Elsevier Sci. B.V., Amsterdam, 1996)
[4] A. Chigogidze, The theory of n-shapes, Russian Math. Surveys 44 (1989), 145–174. | Zbl 0696.54013
[5] A. Dranishnikov, A private communication 1990.
[6] A. Dranishnikov, Universal Menger compacta and universal mappings, Math. USSR Sb. 57 (1987), no. 1, 131–149. | Zbl 0622.54026
[7] A. Dranishnikov, Absolute ekstensors in dimension n and n-soft maps increasing dimension, UspekhiMat. Nauk 39 (1984), no. 5(239), 55–95 (in Russian).
[8] J. Dugundji, Modified Vietoris theorem for homotopy, Fund. Math. 66 (1970), 223–235. | Zbl 0196.26801
[9] J. Dugundji and E. Michael, On local and uniformly local topological properties, Proc. Amer. Math. Soc. 7 (1956), 304–307. | Zbl 0071.38203
[10] V. Gutev, Selections for quasi-l.sc. mappings with uniformly equi-LCn range, Set-Valued Anal. 1 (1993), no. 4, 319–328. | Zbl 0809.54016
[11] S. Mardešic, On covering dimension and inverse limits of compact spaces, Illinois Math. Joourn. 4 (1960), no. 2, 278–291. | Zbl 0094.16902
[12] N. To Nhu, Investigating the ANR-property of metric spaces, Fund. Math. 124 (1984), 243–254; Corrections: Fund. Math. 141 (1992), 297. | Zbl 0573.54009
[13] S. T. Hu, Theory of retracts, Wayne State Univ. Press, Detroit, 1965. | Zbl 0145.43003
[14] A. Karassev and V. Valov, Extension dimension and quasi-finite CW-complexes, Topology Appl. 153 (2006), 3241–3254. [WoS] | Zbl 1177.54016
[15] B. Pasynkov, Monotonicity of dimension and open mappings that raise dimension, Trudy Mat. Inst. Steklova 247 (2004), 202–213 (in Russian).
[16] B. Pasynkov, On universal bicompacta of given weight and dimension, Dokl. Akad. Nauk SSSR 154 (1964), no. 5, 1042–1043 (in Russian). | Zbl 0197.48601
[17] K. Sakai, Geometric aspects of general topology, Springer Monographs in Mathematics. Springer, Tokyo, 2013. | Zbl 1280.54001
[18] E. Shchepin, Topology of limit spaces with uncountable inverse spectra, Uspekhi Mat. Nauk 31 (1976), no. 5(191), 191–226 (in Russian).