We give a necessary and sufficient condition for a map deffned on a simply-connected quasi-convex metric space to factor through a tree. In case the target is the Euclidean plane and the map is Hölder continuous with exponent bigger than 1/2, such maps can be characterized by the vanishing of some integrals over winding number functions. This in particular shows that if the target is the Heisenberg group equipped with the Carnot-Carathéodory metric and the Hölder exponent of the map is bigger than 2/3, the map factors through a tree.
@article{bwmeta1.element.doi-10_1515_agms-2015-0005, author = {Roger Z\"ust}, title = {Some Results on Maps That Factor through a Tree}, journal = {Analysis and Geometry in Metric Spaces}, volume = {3}, year = {2015}, zbl = {1317.51008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_agms-2015-0005} }
Roger Züst. Some Results on Maps That Factor through a Tree. Analysis and Geometry in Metric Spaces, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_agms-2015-0005/
[1] L. Ambrosio and B. Kirchheim, Currents in metric spaces, Acta Math. 185 (2000), 1–80. | Zbl 0984.49025
[2] W. Blaschke, Kreis und Kugel, Veit, Leipzig, 1916. | Zbl 46.1109.01
[3] H. Boedihardjo, H. Ni and Z. Qian, Uniqueness of signature for simple curves, Journal of Functional Analysis 267 (2014), 1778–1806. | Zbl 1294.60063
[4] D. Burago, Y. Burago and S. Ivanov, A course in metric geometry, Graduate Studies in Mathematics, Volume 33, American Mathematical Society, Providence, 2001.
[5] L. Capogna, D. Danielli, S. Pauls and J. Tyson, An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, Progress in Mathematics, Volume 259, Birkhäuser, Basel, 2007. | Zbl 1138.53003
[6] H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969.
[7] P. K. Fritz and M. Hairer, A Course on Rough Paths: With an Introduction to Regularity Structures, Springer, 2014.
[8] M. Gromov, Carnot-Carathéodory spaces seen from within, in Sub-Riemannian geometry, Progress inMathematics, Volume 144, Birkhäuser, Basel, 1996, 79–323.
[9] M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, Volume 152, Birkhäuser Boston Inc., Boston, 1999. With appendices by M. Katz, P. Pansu and S. Semmes.
[10] U. Lang, Local currents in metric spaces, J. Geom. Anal. 21 (2011), 683–742. | Zbl 1222.49055
[11] U. Lang, T. Schlichenmaier, Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions, Int. Math. Res. Not. 58 (2005), 3625–3655. | Zbl 1095.53033
[12] E. Le Donne and R. Züst, Some properties of Hölder surfaces in the Heisenberg group, Illinois J. Math. 57 (2013), 229–249. | Zbl 1294.53033
[13] T. J. Lyons, Differential equations driven by rough signals, Rev. Math. Iberoamericana. 14 (1998), 215–310. [Crossref] | Zbl 0923.34056
[14] E. Outerelo and J. M. Ruiz, Mapping degree theory, Graduate Studies in Mathematics, Volume 108, American Mathematical Society, Providence, 2009. | Zbl 1183.47056
[15] J. C. Mayer and L. G. Oversteegen, A topological characterization of R-trees, Trans. Amer. Math. Soc. 320 (1990), 395–415. | Zbl 0729.54008
[16] C. Riedweg and D. Schäppi, Singular (Lipschitz) homology and homology of integral currents, arXiv:0902.3831, 2009.
[17] S. Wenger and R. Young, Lipschitz homotopy groups of the Heisenberg groups, Geom. Funct. Anal. 24 (2014), 387–402. [WoS] | Zbl 1310.57045
[18] L. C. Young, An inequality of the Hölder type, connected with Stieltjes integration, Acta Math. 67 (1936), 251–282. | Zbl 0016.10404
[19] R. Züst, Currents in snowflaked metric spaces, phd thesis, ETH Zurich, 2011.
[20] R. Züst, Integration of Hölder forms and currents in snowflake spaces, Calc. Var. and PDE 40 (2011), 99–124. [WoS] | Zbl 1219.49036