We find necessary and sufficient conditions for a Lipschitz map f : E ⊂ ℝk → X into a metric space to satisfy ℋk(f(E)) = 0. An interesting feature of our approach is that despite the fact that we are dealing with arbitrary metric spaces, we employ a variant of the classical implicit function theorem. Applications include pure unrectifiability of the Heisenberg groups.
@article{bwmeta1.element.doi-10_1515_agms-2015-0001, author = {Piotr Haj\l asz and Soheil Malekzadeh}, title = {On Conditions for Unrectifiability of a Metric Space}, journal = {Analysis and Geometry in Metric Spaces}, volume = {3}, year = {2015}, zbl = {1321.28008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_agms-2015-0001} }
Piotr Hajłasz; Soheil Malekzadeh. On Conditions for Unrectifiability of a Metric Space. Analysis and Geometry in Metric Spaces, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_agms-2015-0001/
[1] Ambrosio, L., Kirchheim, B.: Rectifiable sets in metric and Banach spaces. Math. Ann. 318 (2000), 527–555. | Zbl 0966.28002
[2] Ambrosio, L., Kirchheim, B.: Currents in metric spaces. Acta Math. 185 (2000),1–80. | Zbl 0984.49025
[3] Balogh, Z. M., Hajłasz, P., Wildrick, K.: Weak contact equations for mappings into Heisenberg groups. Indiana Univ. Math. J. (to appear). | Zbl 1316.53034
[4] David, G., Semmes, S.: Fractured fractals and broken dreams. Self-similar geometry through metric and measure. Oxford Lecture Series in Mathematics and its Applications, 7. The Clarendon Press, Oxford University Press, New York, 1997. | Zbl 0887.54001
[5] DiBenedetto, E.: Real analysis. Birkhäuser Advanced Texts: Basler Lehrbücher.
[Birkhäuser Advanced Texts: Basel Textbooks] Birkhäuser Boston, Inc., Boston, MA, 2002.
[6] Evans, L. C., Gariepy, R. F.: Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. | Zbl 0804.28001
[7] Federer, H.: Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153 Springer-Verlag New York Inc., New York 1969
[8] Franchi, B., Gutiérrez, C. E., Wheeden, R. L.: Weighted Sobolev-Poincaré inequalities for Grushin type operators. Comm. Partial Differential Equations 19 (1994), 523–604. | Zbl 0822.46032
[9] Gilbarg, D., Trudinger, N. S.: Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001. | Zbl 1042.35002
[10] Gromov, M.: Partial differential relations. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 9. Springer-Verlag, Berlin, 1986. | Zbl 0651.53001
[11] Hajłasz, P.: Change of variables formula under minimal assumptions. Colloq. Math. 64 (1993), 93–101. | Zbl 0840.26009
[12] Hajłasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Amer. Math. Soc. 145 (2000), no. 688, x+101 pp. | Zbl 0954.46022
[13] Heinonen, J.: Lectures on analysis on metric spaces. Universitext. Springer-Verlag, New York, 2001. | Zbl 0985.46008
[14] Kirchheim, B.: Rectifiable metric spaces: local structure and regularity of the Hausdorff measure. Proc. Amer. Math. Soc. 121 (1994), 113–123. | Zbl 0806.28004
[15] Le Donne, E.: Lipschitz and path isometric embeddings of metric spaces. Geom. Dedicata 166 (2013), 47–66. | Zbl 1281.30041
[16] Magnani, V.: Unrectifiability and rigidity in stratified groups. Arch. Math. (Basel) 83 (2004), 568–576. | Zbl 1062.22019
[17] Malý, J., Ziemer,W. P.: Fine regularity of solutions of elliptic partial differential equations.Mathematical Surveys and Monographs, 51. American Mathematical Society, Providence, RI, 1997. | Zbl 0882.35001
[18] Martio, O., Väisälä, J.: Elliptic equations and maps of bounded length distortion. Math. Ann. 282 (1988), 423–443. | Zbl 0632.35021
[19] Mattila, P.: Geometry of sets and measures in Euclidean spaces. Cambridge Studies in Advanced Mathematics, Vol. 44. Cambridge University Press, Cambridge, 1995. | Zbl 0819.28004
[20] Monti R.: Distances, boundaries and surface measures in Carnot-Carathéodory spaces, PhD thesis 2001. Available at http://www.math.unipd.it/ monti/PAPERS/TesiFinale.pdf
[21] Sternberg, S.: Lectures on differential geometry. Second edition. With an appendix by Sternberg and Victor W. Guillemin. Chelsea Publishing Co., New York, 1983.
[22] Varopoulos, N. Th., Saloff-Coste, L., Coulhon, T.: Analysis and geometry on groups. Cambridge Tracts inMathematics, 100. Cambridge University Press, Cambridge, 1992.
[23] Whitney, H.: On totally differentiable and smooth functions. Pacific J. Math. 1 (1951), 143–159. | Zbl 0043.05803