Estimation and prediction in regression models with random explanatory variables
Nguyen Bac-Van
GDML_Books, (1992), p.

The regression model X(t),Y(t);t=1,...,n with random explanatory variable X is transformed by prescribing a partition S1,...,Sk of the given domain S of X-values and specifyingX(1),...,X(n)Si=Xi1,...,Xiα(i),i=1,...,k.Through the conditioningα(i)=a(i),i=1,...,k,Xi1,...,Xiα(i);i=1,...,k=x11,...,xka(k)the initial model with i.i.d. pairs (X(t),Y(t)),t=1,...,n, becomes a conditional fixed-design (x11,...,xka(k)) modelYij,i=1,...,k;j=1,...,a(i)where the response variables Yij are independent and distributed according to the mixed conditional distribution Q(·,xij) of Y given X at the observed value xij.Afterwards, we investigate the case(Q)E(Y'|x)=i=1kbi(x)θiISi(x),(Q)D(Y|x)=i=1kdi(x)ΣiISi(x)which arises when the conditional distribution law of Y given X changes as X passes from a domain Si to another, whence Y follows a mixture of distributions. Then the general transformation gives the equivalent reduction to a conditional multivariate Behrens-Fisher model. We construct conditional generalized least squares estimators of θ'=(θ1'θk') and predictors of Y(n+1) given X(n+1) = x ∈ S. Through some condition imposed on the range of θ, the CGLS estimator and predictor are shown to enjoy local and global optimality.

CONTENTSPreface..................................................................................................................................................................................................................5I. A data transformation preserving the conditional distribution and localizing the explanatory variable.................................................................61. Introduction........................................................................................................................................................................................................62. Theorems on data transformation......................................................................................................................................................................73. Proofs of the theorems.......................................................................................................................................................................................94. Interpretation of the theorems..........................................................................................................................................................................14II. Conditional linear models and estimation of regression parameters.................................................................................................................175. Introduction......................................................................................................................................................................................................176. Conditional generalized least squares estimators (CGLSE).............................................................................................................................197. Conditional estimability.....................................................................................................................................................................................258. Properties of the CGLSE..................................................................................................................................................................................29III. Prediction of the response variable.................................................................................................................................................................349. Introduction......................................................................................................................................................................................................3510. Predictors connnected wi.th the CGLSE........................................................................................................................................................3511. Properties of CGLS predictors.......................................................................................................................................................................38References..........................................................................................................................................................................................................43

1991 Mathematics Subject Classification: Primary 62J02; Secondary 62F11.

EUDML-ID : urn:eudml:doc:219330
@book{bwmeta1.element.dl-catalog-ab559102-2116-437c-bc3d-01f9bce0ed8e,
     author = {Nguyen Bac-Van},
     title = {Estimation and prediction in regression models with random explanatory variables},
     series = {GDML\_Books},
     publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
     address = {Warszawa},
     year = {1992},
     zbl = {0766.62037},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.dl-catalog-ab559102-2116-437c-bc3d-01f9bce0ed8e}
}
Nguyen Bac-Van. Estimation and prediction in regression models with random explanatory variables. GDML_Books (1992),  http://gdmltest.u-ga.fr/item/bwmeta1.element.dl-catalog-ab559102-2116-437c-bc3d-01f9bce0ed8e/