The regression model X(t),Y(t);t=1,...,n with random explanatory variable X is transformed by prescribing a partition of the given domain S of X-values and specifyingThrough the conditioningthe initial model with i.i.d. pairs (X(t),Y(t)),t=1,...,n, becomes a conditional fixed-design modelwhere the response variables are independent and distributed according to the mixed conditional distribution of Y given X at the observed value .Afterwards, we investigate the casewhich arises when the conditional distribution law of Y given X changes as X passes from a domain to another, whence Y follows a mixture of distributions. Then the general transformation gives the equivalent reduction to a conditional multivariate Behrens-Fisher model. We construct conditional generalized least squares estimators of and predictors of Y(n+1) given X(n+1) = x ∈ S. Through some condition imposed on the range of θ, the CGLS estimator and predictor are shown to enjoy local and global optimality.
CONTENTSPreface..................................................................................................................................................................................................................5I. A data transformation preserving the conditional distribution and localizing the explanatory variable.................................................................61. Introduction........................................................................................................................................................................................................62. Theorems on data transformation......................................................................................................................................................................73. Proofs of the theorems.......................................................................................................................................................................................94. Interpretation of the theorems..........................................................................................................................................................................14II. Conditional linear models and estimation of regression parameters.................................................................................................................175. Introduction......................................................................................................................................................................................................176. Conditional generalized least squares estimators (CGLSE).............................................................................................................................197. Conditional estimability.....................................................................................................................................................................................258. Properties of the CGLSE..................................................................................................................................................................................29III. Prediction of the response variable.................................................................................................................................................................349. Introduction......................................................................................................................................................................................................3510. Predictors connnected wi.th the CGLSE........................................................................................................................................................3511. Properties of CGLS predictors.......................................................................................................................................................................38References..........................................................................................................................................................................................................43
1991 Mathematics Subject Classification: Primary 62J02; Secondary 62F11.
@book{bwmeta1.element.dl-catalog-ab559102-2116-437c-bc3d-01f9bce0ed8e, author = {Nguyen Bac-Van}, title = {Estimation and prediction in regression models with random explanatory variables}, series = {GDML\_Books}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, address = {Warszawa}, year = {1992}, zbl = {0766.62037}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.dl-catalog-ab559102-2116-437c-bc3d-01f9bce0ed8e} }
Nguyen Bac-Van. Estimation and prediction in regression models with random explanatory variables. GDML_Books (1992), http://gdmltest.u-ga.fr/item/bwmeta1.element.dl-catalog-ab559102-2116-437c-bc3d-01f9bce0ed8e/