We introduce an ordinal index which measures the complexity of a weakly null sequence, and show that a construction due to J. Schreier can be iterated to produce for each α < ω₁, a weakly null sequence in with complexity α. As in the Schreier example each of these is a sequence of indicator functions which is a suppression-1 unconditional basic sequence. These sequences are used to construct Tsirelson-like spaces of large index. We also show that this new ordinal index is related to the Lavrent’ev index of a Baire-1 function and use the index to sharpen some results of Alspach and Odell on averaging weakly null sequences.
CONTENTS0. Introduction.................................................................................................51. Preliminaries...............................................................................................62. Weakly null sequences and the l¹-index......................................................93. Comparison with the l¹-index.....................................................................124. Construction of weakly null sequences with large oscillation index............215. Reflexive spaces with large oscillation index.............................................336. Comparison with the averaging index........................................................37References....................................................................................................43
1991 Mathematics Subject Classification: Primary 46B20.
@book{bwmeta1.element.dl-catalog-6b371b16-cc33-4d17-befa-89bf4becbc48, author = {Dale E. Alspach and Spiros Argyros}, title = {Complexity of weakly null sequences}, series = {GDML\_Books}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, address = {Warszawa}, year = {1992}, zbl = {0787.46009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.dl-catalog-6b371b16-cc33-4d17-befa-89bf4becbc48} }
Dale E. Alspach; Spiros Argyros. Complexity of weakly null sequences. GDML_Books (1992), http://gdmltest.u-ga.fr/item/bwmeta1.element.dl-catalog-6b371b16-cc33-4d17-befa-89bf4becbc48/