Problèmes aux limites pour des inclusions différentielles sans condition de croissance
Marlène Frigon
Annales Polonici Mathematici, Tome 55 (1991), p. 69-83 / Harvested from The Polish Digital Mathematics Library

 Abstract. Applying the topological transversality method of Granas and the a priori bounds technique, we prove some existence theorems for diflerential inclusions of the form x" ∈ F(t, x, x'), x ∈ ℬ, where F is a Carathéodory multifunction with convex, compact values. No growth condition will be imposed on F.

Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:266989
@article{bwmeta1.element.desklight-ec7e2df0-914c-4c1a-a0a5-bb440c0cb89f,
     author = {Marl\`ene Frigon},
     title = {Probl\`emes aux limites pour des inclusions diff\'erentielles sans condition de croissance},
     journal = {Annales Polonici Mathematici},
     volume = {55},
     year = {1991},
     pages = {69-83},
     zbl = {0812.34016},
     language = {fra},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.desklight-ec7e2df0-914c-4c1a-a0a5-bb440c0cb89f}
}
Marlène Frigon. Problèmes aux limites pour des inclusions différentielles sans condition de croissance. Annales Polonici Mathematici, Tome 55 (1991) pp. 69-83. http://gdmltest.u-ga.fr/item/bwmeta1.element.desklight-ec7e2df0-914c-4c1a-a0a5-bb440c0cb89f/

[00000] [1] J. J. Benedetto, Real Variable and Integration, Teubner, Stuttgart 1976. | Zbl 0336.26001

[00001] [2] C. Berge, Espaces topologiques, Fonctions multivoques, Dunod, Paris 1959. | Zbl 0088.14703

[00002] [3] J. Dugundji and A. Granas, Fixed Point Theory, Vol. 1, Monografie Matematyczne 61', PWN, Warszawa 1982.

[00003] [4] L. H. Erbe and W. Krawcewicz, Nonlinear boundary value problems for differential inclusions y" e F(x, y, y'), Ann. Polon. Math, (to appear). | Zbl 0731.34078

[00004] [5] M. Frigon, Application de la théorie de la transversalité topologique à des problèmes non linéaires pour des équations différentielles ordinaires, Dissertationes Math. 296 (1990), 79 pp.

[00005] [6] M. Frigon, Théorie de la transversalité topologique appliquée à des problèmes aux limites sans condition de croissance. Rapport CRM-1632, Université de Montréal, Septembre 1969.

[00006] [7] A. Granas, R. B. Guenther and J. W. Lee, Some existence results for the differential inclusions y(k)(x,y,...,y(k-1)),y, C. R. Acad. Sci. Paris Sér. I 307 (1988), 391-396. | Zbl 0652.34018

[00007] [8] Some general existence principles In the Carathéodory theory of nonlinear differential systems, J. Math. Pures Appl. (to appear).

[00008] [9] C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53-72. | Zbl 0296.28003

[00009] [10] T. Pruszko, Topological degree methods in multi-valued boundary value problems, Nonlinear Anal. 5 (1981), 959-973. | Zbl 0478.34017

[00010] [11] T. Pruszko, Some applications of the topological degree theory to multi-valued boundary value problems, Dissertationes Math. 229 (1984), 52 pp. | Zbl 0543.34008