The number of minimum points of a positive quadratic form
G. L. Watson
GDML_Books, (1971), p.

CONTENTSIntroduction.......................................................................................61. Definition of certain special forms...........................................62. Statement of results...................................................................83. Proof of Theorem 2.....................................................................94. Preliminaries for Theorem 1.....................................................105. Further preliminaries for Theorem 1.......................................156. Construction for Theorem 1......................................................187. The case B4ƒn,C5ƒn of Theorem 1..............218. The case B5ƒn of Theorem 1....................................249. Further construction for the case B5ƒn7............2610. The case E6ƒn...........................................................3011. Preliminaries for the case E6ƒn.............................3212. Proof of Theorem 1 for E8ƒn and for n ≥ 10.........3413. Completion of proof of Theorem 1........................................3814. Conclusion.................................................................................40References.......................................................................................42

EUDML-ID : urn:eudml:doc:268650
@book{bwmeta1.element.desklight-df7a4818-73dd-4f6a-8855-3b873cd1a83c,
     author = {G. L. Watson},
     title = {The number of minimum points of a positive quadratic form},
     series = {GDML\_Books},
     publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
     address = {Warszawa},
     year = {1971},
     zbl = {0215.34901},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.desklight-df7a4818-73dd-4f6a-8855-3b873cd1a83c}
}
G. L. Watson. The number of minimum points of a positive quadratic form. GDML_Books (1971),  http://gdmltest.u-ga.fr/item/bwmeta1.element.desklight-df7a4818-73dd-4f6a-8855-3b873cd1a83c/