CONTENTSPRELIMINARIES§ 0. Introduction.......................................................................................................................................................................3§ 1. Definitions and notation.................................................................................................................................................5Chapter ILOCALLY BOUNDED ALGEBRAS§ 2. Basic facts and examples..............................................................................................................................................6§ 3. Commutative p-normed algebras, spectral form and p-normed field..................................................................8§ 4. Commutative p-normed algebras (continued)..........................................................................................................12§ 5. Analytic functions in p-normed algebras.....................................................................................................................16§ 6. Final remarks...................................................................................................................................................................21Chapter IIF-ALGEBRAS AND TOPOLOGICAL ALGEBRAS§ 7. F-algebras.........................................................................................................................................................................23§ 8. Topological division algebras.......................................................................................................................................26Chapter III-ALGEBRAS§ 9. Basic facts.........................................................................................................................................................................29§ 10. Multiplicatively convex B0-algebras.........................................................................................................................31§ 11. Spectra and power series in commutative m-convex -algebras..............................................................34§ 12. Examples of non-m-convex -algebras..........................................................................................................40§ 13. Extended spectrum; theorem on entire functions and its applications to Q-algebras and radicals.............44§ 14. Elementary properties of entire functions and characterization of commutative -algebras with and without entire functions..................................................................................................................................................51§ 15. Entire operations in -spaces and their applications to entire functions.................................................56§ 16. Final remarks.................................................................................................................................................................65References...............................................................................................................................................................................68
@book{bwmeta1.element.desklight-b95181cb-4402-4160-8486-8e1f666754db,
author = {W. \.Zelazko},
title = {Metric generalizations of Banach algebras},
series = {GDML\_Books},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
address = {Warszawa},
year = {1965},
zbl = {0131.13005},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.desklight-b95181cb-4402-4160-8486-8e1f666754db}
}
W. Żelazko. Metric generalizations of Banach algebras. GDML_Books (1965), http://gdmltest.u-ga.fr/item/bwmeta1.element.desklight-b95181cb-4402-4160-8486-8e1f666754db/