Metric generalizations of Banach algebras
W. Żelazko
GDML_Books, (1965), p.

CONTENTSPRELIMINARIES§ 0. Introduction.......................................................................................................................................................................3§ 1. Definitions and notation.................................................................................................................................................5Chapter ILOCALLY BOUNDED ALGEBRAS§ 2. Basic facts and examples..............................................................................................................................................6§ 3. Commutative p-normed algebras, spectral form and p-normed field..................................................................8§ 4. Commutative p-normed algebras (continued)..........................................................................................................12§ 5. Analytic functions in p-normed algebras.....................................................................................................................16§ 6. Final remarks...................................................................................................................................................................21Chapter IIF-ALGEBRAS AND TOPOLOGICAL ALGEBRAS§ 7. F-algebras.........................................................................................................................................................................23§ 8. Topological division algebras.......................................................................................................................................26Chapter IIIB0-ALGEBRAS§ 9. Basic facts.........................................................................................................................................................................29§ 10. Multiplicatively convex B0-algebras.........................................................................................................................31§ 11. Spectra and power series in commutative m-convex B0-algebras..............................................................34§ 12. Examples of non-m-convex B0-algebras..........................................................................................................40§ 13. Extended spectrum; theorem on entire functions and its applications to Q-algebras and radicals.............44§ 14. Elementary properties of entire functions and characterization of commutative B0-algebras with and without entire functions..................................................................................................................................................51§ 15. Entire operations in B0-spaces and their applications to entire functions.................................................56§ 16. Final remarks.................................................................................................................................................................65References...............................................................................................................................................................................68

EUDML-ID : urn:eudml:doc:268341
@book{bwmeta1.element.desklight-b95181cb-4402-4160-8486-8e1f666754db,
     author = {W. \.Zelazko},
     title = {Metric generalizations of Banach algebras},
     series = {GDML\_Books},
     publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
     address = {Warszawa},
     year = {1965},
     zbl = {0131.13005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.desklight-b95181cb-4402-4160-8486-8e1f666754db}
}
W. Żelazko. Metric generalizations of Banach algebras. GDML_Books (1965),  http://gdmltest.u-ga.fr/item/bwmeta1.element.desklight-b95181cb-4402-4160-8486-8e1f666754db/