Abstract. The paper concerns the problem of the existence of a finite invariant absolutely continuous measure for piecewise -regular and convex transformations T: [0, l]→[0,1]. We show that in the case when T’(0) = 1 and T"(0) exists T does not admit such a measure. This result is complementary to the ones contained in [3] and [5].
@article{bwmeta1.element.desklight-a19712ac-a82d-48c5-910c-0561d77f7302, author = {Tomasz Komorowski}, title = {Piecewise convex transformations with no finite invariant measure}, journal = {Annales Polonici Mathematici}, volume = {55}, year = {1991}, pages = {59-68}, zbl = {0736.28009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.desklight-a19712ac-a82d-48c5-910c-0561d77f7302} }
Tomasz Komorowski. Piecewise convex transformations with no finite invariant measure. Annales Polonici Mathematici, Tome 55 (1991) pp. 59-68. http://gdmltest.u-ga.fr/item/bwmeta1.element.desklight-a19712ac-a82d-48c5-910c-0561d77f7302/
[00000] [1] R. Bowen, Invariant measures for Markov maps of the interval, Comm. Math. Phya. 69 (1979), 1-17. | Zbl 0421.28016
[00001] [2] S. R. Foguel, The Ergodic Theory of Markov Processes, van Nostrand Reinhold, New York 1969.
[00002] [3] P. Kacprowski, On the existence of invariant measures for piecewise smooth transformations, Ann. Polon. Math. 40 (1983), 179-184.
[00003] [4] A. Lasota and M. C. Mackey, Probabilistic Properties of Deterministic Systems, Cambridge University Press, 1985. | Zbl 0606.58002
[00004] [5] A. Lasota and J. A. Yorke, Exact dynamical systems and the Frobenius- Perron operators, Trans. Amer. Math. Soc. 273 (1982), 375-384. | Zbl 0524.28021
[00005] [6] F. Schweiger, Numbertheoretical endomorphisms with a-finite invariant measure, Israel J. Math. 21 (1975), 308-318. | Zbl 0314.10037
[00006] [7] F. Schweiger, Some remarks on ergodicity and invariant measures, Michigan Math. J. 22 (1975), 308-318.
[00007] [8] M. Thaler, Estimates of the invariant densities of endomorphisms with indifferent fixed points, Israel J. Math. 37 (1980), 303-314. | Zbl 0447.28016
[00008] [9] M. Thaler, Transformations on [0, 1] with infinite invariant measure, ibid. 46 (1983), 67-96.