A new characterization of the sphere in R3
Thomas Hasanis
Annales Polonici Mathematici, Tome 37 (1980), p. 47-49 / Harvested from The Polish Digital Mathematics Library

Let M be a closed connected surface in R3 with positive Gaussian curvature K and let KII be the curvature of its second fundamental form. It is shown that M is a sphere if KII=cHKr, for some constants c and r, where H is the mean curvature of M.

Publié le : 1980-01-01
EUDML-ID : urn:eudml:doc:265975
@article{bwmeta1.element.desklight-9b85a816-868c-42ca-bd74-ce6d2fc1bc9e,
     author = {Thomas Hasanis},
     title = {A new characterization of the sphere in $R^3$
            },
     journal = {Annales Polonici Mathematici},
     volume = {37},
     year = {1980},
     pages = {47-49},
     zbl = {0454.53037},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.desklight-9b85a816-868c-42ca-bd74-ce6d2fc1bc9e}
}
Thomas Hasanis. A new characterization of the sphere in $R^3$
            . Annales Polonici Mathematici, Tome 37 (1980) pp. 47-49. http://gdmltest.u-ga.fr/item/bwmeta1.element.desklight-9b85a816-868c-42ca-bd74-ce6d2fc1bc9e/