Let M be a closed connected surface in with positive Gaussian curvature K and let be the curvature of its second fundamental form. It is shown that M is a sphere if , for some constants c and r, where H is the mean curvature of M.
@article{bwmeta1.element.desklight-9b85a816-868c-42ca-bd74-ce6d2fc1bc9e, author = {Thomas Hasanis}, title = {A new characterization of the sphere in $R^3$ }, journal = {Annales Polonici Mathematici}, volume = {37}, year = {1980}, pages = {47-49}, zbl = {0454.53037}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.desklight-9b85a816-868c-42ca-bd74-ce6d2fc1bc9e} }
Thomas Hasanis. A new characterization of the sphere in $R^3$ . Annales Polonici Mathematici, Tome 37 (1980) pp. 47-49. http://gdmltest.u-ga.fr/item/bwmeta1.element.desklight-9b85a816-868c-42ca-bd74-ce6d2fc1bc9e/