Regular fractional iteration of convex functions
Marek Kuczma
Annales Polonici Mathematici, Tome 37 (1980), p. 95-100 / Harvested from The Polish Digital Mathematics Library

The existence of a unique C1 solution φ of equation (1) is proved under the condition that f: I → I is convex or concave and of class C1 in I, 0 < f(x) < x in I*, and f’(x) > 0 in I. Here I = [0, a] or [0, a), 0 < a ≤ ∞, and I* = I 0.

Publié le : 1980-01-01
EUDML-ID : urn:eudml:doc:265331
@article{bwmeta1.element.desklight-79848988-1608-40e8-bf4c-d2adc0238647,
     author = {Marek Kuczma},
     title = {Regular fractional iteration of convex functions},
     journal = {Annales Polonici Mathematici},
     volume = {37},
     year = {1980},
     pages = {95-100},
     zbl = {0447.39005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.desklight-79848988-1608-40e8-bf4c-d2adc0238647}
}
Marek Kuczma. Regular fractional iteration of convex functions. Annales Polonici Mathematici, Tome 37 (1980) pp. 95-100. http://gdmltest.u-ga.fr/item/bwmeta1.element.desklight-79848988-1608-40e8-bf4c-d2adc0238647/