The existence of a unique solution φ of equation (1) is proved under the condition that f: I → I is convex or concave and of class in I, 0 < f(x) < x in I*, and f’(x) > 0 in I. Here I = [0, a] or [0, a), 0 < a ≤ ∞, and I* = I 0.
@article{bwmeta1.element.desklight-79848988-1608-40e8-bf4c-d2adc0238647, author = {Marek Kuczma}, title = {Regular fractional iteration of convex functions}, journal = {Annales Polonici Mathematici}, volume = {37}, year = {1980}, pages = {95-100}, zbl = {0447.39005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.desklight-79848988-1608-40e8-bf4c-d2adc0238647} }
Marek Kuczma. Regular fractional iteration of convex functions. Annales Polonici Mathematici, Tome 37 (1980) pp. 95-100. http://gdmltest.u-ga.fr/item/bwmeta1.element.desklight-79848988-1608-40e8-bf4c-d2adc0238647/