Abstract. The characterization of hyperbolic embeddability of relatively compact subspaces of a complex space in terms of extension of holomorphic maps from the punctured disc and of limit complex lines is given.
@article{bwmeta1.element.desklight-76b57754-1036-403b-9680-854d968a1fe9, author = {Do Duc Thai}, title = {Remark on hyperbolic embeddability of relatively compact subspaces of complex spaces}, journal = {Annales Polonici Mathematici}, volume = {55}, year = {1991}, pages = {9-11}, zbl = {0741.32021}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.desklight-76b57754-1036-403b-9680-854d968a1fe9} }
Do Duc Thai. Remark on hyperbolic embeddability of relatively compact subspaces of complex spaces. Annales Polonici Mathematici, Tome 55 (1991) pp. 9-11. http://gdmltest.u-ga.fr/item/bwmeta1.element.desklight-76b57754-1036-403b-9680-854d968a1fe9/
[00000] [1] R. Brody, Compact manifolds and hyperbolicity, Trans. Amer. Math. Soc. 235 (1978), 213-219. | Zbl 0416.32013
[00001] [2] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Dekker, 1970. | Zbl 0207.37902
[00002] [3] S. Lang, Introduction to Complex Hyperbolic Spaces, Springer-Verlag, 1987.
[00003] [4] M. Zaidenberg, Picard theorem and hyperbolicity, Siberian Math. J. 24 (6) (1983), 44-55.