CONTENTSPREFACE..........................................................................................................................................................................3INTRODUCTION............................................................................................................................................................. 41. Notation. 2. Subject of the paper.Chapter I. DECOMPOSITION OF Σ INTO , , , INESSENTIAL RESTRICTIONOF GENERALITY ............................................................................................................................................................ 61. Families , k = 1, 2, 3, 4. 2. Families and , k = 1, 2, 3, 4.Chapter II. FURTHER AUXILIARY THEOREMS....................................................................................................... 101. Chains of order n. 2. Further notations. 3. A sufficient condition forɅ(S) = Γ. Property (.). 4. A lemma on complex numbers. 5. Properties(..), (...) and (....). 6 A necessary and sufficient condition for Ʌ (S) = Γ.Chapter III. CASES: and ................................................................................................ 201. Case: . 2. Case: .Chapter IV. CASES: and FAMILIES ɸ(S)..................................................................... 221. Notations. 2. Preliminary remarks on ɸ(S) for S from . 3. Generaltheorems on ɸ(S) for S from . 4. Detailed remarks on ɸ(S). 5. Thestructure of for a special S from Chapter V. CASE: , FAMILIES Ω(S)...................................................................................................... 341. Definitions of the families Ω, Ω(S), and , k = 0, 1, 2, 3, 4.2. Families , k = 0, 1, 2, 3, 4 and . 3. A sufficient condition forL(S) = C in the case . 4. Regions Fj(z, p; e), j = 1, 2, 3, 4. 5.Families . 6. Families and Ω(S).Chapter VI. CASE: VARIOUS PROBLEMS........................................................................... 421. Property (—). 2. An example of the equality Λ(S) = Γ for S from 3. An open problem concerning REFERENCES................................................................................................................................................................ 46
@book{bwmeta1.element.desklight-66482d91-dcf6-472d-bc50-1253cb44a1d9,
author = {B. Jasek},
title = {Complex series and connected sets},
series = {GDML\_Books},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
address = {Warszawa},
year = {1966},
zbl = {0166.31702},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.desklight-66482d91-dcf6-472d-bc50-1253cb44a1d9}
}
B. Jasek. Complex series and connected sets. GDML_Books (1966), http://gdmltest.u-ga.fr/item/bwmeta1.element.desklight-66482d91-dcf6-472d-bc50-1253cb44a1d9/