Random differential inclusions with convex right hand sides
Krystyna Grytczuk ; Emilia Rotkiewicz
Annales Polonici Mathematici, Tome 55 (1991), p. 13-19 / Harvested from The Polish Digital Mathematics Library

 Abstract. The main result of the present paper deals with the existence of solutions of random functional-differential inclusions of the form ẋ(t, ω) ∈ G(t, ω, x(·, ω), ẋ(·, ω)) with G taking as its values nonempty compact and convex subsets of n-dimensional Euclidean space Rn.

Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:264115
@article{bwmeta1.element.desklight-4b369dd8-a3b0-40dd-af64-075dad6ac25b,
     author = {Krystyna Grytczuk and Emilia Rotkiewicz},
     title = {Random differential inclusions with convex right hand sides},
     journal = {Annales Polonici Mathematici},
     volume = {55},
     year = {1991},
     pages = {13-19},
     zbl = {0735.60066},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.desklight-4b369dd8-a3b0-40dd-af64-075dad6ac25b}
}
Krystyna Grytczuk; Emilia Rotkiewicz. Random differential inclusions with convex right hand sides. Annales Polonici Mathematici, Tome 55 (1991) pp. 13-19. http://gdmltest.u-ga.fr/item/bwmeta1.element.desklight-4b369dd8-a3b0-40dd-af64-075dad6ac25b/

[00000] [1] R. J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1-12. | Zbl 0163.06301

[00001] [2] N. Dunford and J. T. Schwartz, Linear Operators I, Interscience Publ., New York 1967. | Zbl 0084.10402

[00002] [3] C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53-72. | Zbl 0296.28003

[00003] [4] M. Kisielewicz, Subtrajectory integrals of set-valued functions and neutral functional-differential inclusions, Funkcial. Ekvac. 32 (1989), 123-149.

[00004] [5] M. Kisielewicz, Differential Inclusions and Optimal Control, PWN and D. Reidel, Warszawa 1989 (in press).

[00005] [6] E. Michael, Continuous selections. I, Ann. of Math. 63 (1956), 361-382. | Zbl 0071.15902

[00006] [7] A. Nowak, Applications of random fixed point theorems In the theory of generalized random | Zbl 0617.60059

[00007] differential equations, Bull. Polish Acad. Sci. Math. 34 (7-8) (1986), 487-494.

[00008] [8] L. Rybiński, Multivalued contraction mappings with parameters and random fixed point theorems, Discuss. Math. 8 (1986), 101-108. | Zbl 0643.47052