Abstract. The main result of the present paper deals with the existence of solutions of random functional-differential inclusions of the form ẋ(t, ω) ∈ G(t, ω, x(·, ω), ẋ(·, ω)) with G taking as its values nonempty compact and convex subsets of n-dimensional Euclidean space .
@article{bwmeta1.element.desklight-4b369dd8-a3b0-40dd-af64-075dad6ac25b, author = {Krystyna Grytczuk and Emilia Rotkiewicz}, title = {Random differential inclusions with convex right hand sides}, journal = {Annales Polonici Mathematici}, volume = {55}, year = {1991}, pages = {13-19}, zbl = {0735.60066}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.desklight-4b369dd8-a3b0-40dd-af64-075dad6ac25b} }
Krystyna Grytczuk; Emilia Rotkiewicz. Random differential inclusions with convex right hand sides. Annales Polonici Mathematici, Tome 55 (1991) pp. 13-19. http://gdmltest.u-ga.fr/item/bwmeta1.element.desklight-4b369dd8-a3b0-40dd-af64-075dad6ac25b/
[00000] [1] R. J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1-12. | Zbl 0163.06301
[00001] [2] N. Dunford and J. T. Schwartz, Linear Operators I, Interscience Publ., New York 1967. | Zbl 0084.10402
[00002] [3] C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53-72. | Zbl 0296.28003
[00003] [4] M. Kisielewicz, Subtrajectory integrals of set-valued functions and neutral functional-differential inclusions, Funkcial. Ekvac. 32 (1989), 123-149.
[00004] [5] M. Kisielewicz, Differential Inclusions and Optimal Control, PWN and D. Reidel, Warszawa 1989 (in press).
[00005] [6] E. Michael, Continuous selections. I, Ann. of Math. 63 (1956), 361-382. | Zbl 0071.15902
[00006] [7] A. Nowak, Applications of random fixed point theorems In the theory of generalized random | Zbl 0617.60059
[00007] differential equations, Bull. Polish Acad. Sci. Math. 34 (7-8) (1986), 487-494.
[00008] [8] L. Rybiński, Multivalued contraction mappings with parameters and random fixed point theorems, Discuss. Math. 8 (1986), 101-108. | Zbl 0643.47052