Covariant differentiation of geometric objects
A. Szybiak
GDML_Books, (1967), p.

CONTENTSI. Introduction................................................................................................................. 5II. Covariant differentiation in fibre bundles............................................................. 7III. Connection with the Lie derivation....................................................................... 16IV. Connections in the bundles of differential objects........................................... 19V. Definition of the covariant derivative in terms of functional equations........... 23Appendix. Outline of the theory of prolongations.................................................... 291. Invariance equations of geometric object............................................................ 302. Bases of linear forms and structure equations of fibre bundles.................... 313. Prolongations............................................................................................................ 33References.................................................................................................................... 36

EUDML-ID : urn:eudml:doc:268462
@book{bwmeta1.element.desklight-4a2fa729-a728-4c7e-885e-b2668865191a,
     author = {A. Szybiak},
     title = {Covariant differentiation of geometric objects},
     series = {GDML\_Books},
     publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
     address = {Warszawa},
     year = {1967},
     zbl = {0158.40101},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.desklight-4a2fa729-a728-4c7e-885e-b2668865191a}
}
A. Szybiak. Covariant differentiation of geometric objects. GDML_Books (1967),  http://gdmltest.u-ga.fr/item/bwmeta1.element.desklight-4a2fa729-a728-4c7e-885e-b2668865191a/