CONTENTSI. Introduction................................................................................................................. 5II. Covariant differentiation in fibre bundles............................................................. 7III. Connection with the Lie derivation....................................................................... 16IV. Connections in the bundles of differential objects........................................... 19V. Definition of the covariant derivative in terms of functional equations........... 23Appendix. Outline of the theory of prolongations.................................................... 291. Invariance equations of geometric object............................................................ 302. Bases of linear forms and structure equations of fibre bundles.................... 313. Prolongations............................................................................................................ 33References.................................................................................................................... 36
@book{bwmeta1.element.desklight-4a2fa729-a728-4c7e-885e-b2668865191a, author = {A. Szybiak}, title = {Covariant differentiation of geometric objects}, series = {GDML\_Books}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, address = {Warszawa}, year = {1967}, zbl = {0158.40101}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.desklight-4a2fa729-a728-4c7e-885e-b2668865191a} }
A. Szybiak. Covariant differentiation of geometric objects. GDML_Books (1967), http://gdmltest.u-ga.fr/item/bwmeta1.element.desklight-4a2fa729-a728-4c7e-885e-b2668865191a/