We discuss here the conjectures of Kaplansky and of Lam concerning the ii-univariant of a field of characteristic different from two. Both conjectures are shown t.o hold true for any field having at most 32 square classes.
@article{bwmeta1.element.desklight-399473bf-73b2-42dd-a05e-6325c5056f25, author = {Bronis\l awa B\l aszczyk}, title = {The u-invariant of fields with 16 and 32 square classes I}, journal = {Annales Polonici Mathematici}, volume = {37}, year = {1980}, pages = {1-12}, zbl = {0439.10012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.desklight-399473bf-73b2-42dd-a05e-6325c5056f25} }
Bronisława Błaszczyk. The u-invariant of fields with 16 and 32 square classes I. Annales Polonici Mathematici, Tome 37 (1980) pp. 1-12. http://gdmltest.u-ga.fr/item/bwmeta1.element.desklight-399473bf-73b2-42dd-a05e-6325c5056f25/