Abstract. The existence theorem of an invariant measure and Poincare's Recurrence Theorem are extended to set-valued dynamical systems with closed graph on a compact metric space.
@article{bwmeta1.element.desklight-2fa82d99-1f24-497b-b908-df832430a5f0, author = {Jean-Pierre Aubin and H\'el\`ene Frankowska and Andrzej Lasota}, title = {Poincar\'e's recurrence theorem for set-valued dynamical systems}, journal = {Annales Polonici Mathematici}, volume = {55}, year = {1991}, pages = {85-91}, zbl = {0760.54026}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.desklight-2fa82d99-1f24-497b-b908-df832430a5f0} }
Jean-Pierre Aubin; Hélène Frankowska; Andrzej Lasota. Poincaré's recurrence theorem for set-valued dynamical systems. Annales Polonici Mathematici, Tome 55 (1991) pp. 85-91. http://gdmltest.u-ga.fr/item/bwmeta1.element.desklight-2fa82d99-1f24-497b-b908-df832430a5f0/
[00000] [1] J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley-Interscience, 1984. | Zbl 0641.47066
[00001] [2] J.-P. Aubin qnd H. Frankowska, Set-Valued Analysis (to appear).
[00002] [3] J.-P. Aubin, Mathematical Methods of Game and Economic Theory, Stud. Math. Appl. 7, North-Holland, 1979. | Zbl 0452.90093
[00003] [4] N. Dunford and J. T. Schwartz, Linear Operators I, Wiley, New York 1957. | Zbl 0084.10402
[00004] [5] K. Fan, Extension of two fixed-point theorems of F. E. Browder, Math. Z. 112 (1969), 234-240. | Zbl 0185.39503
[00005] [6] K. Fan,, A minimax inequality and applications, in: Inequalities III, Shisha Ed., 1972.
[00006] [7] B. O. Koopman, Hamiltonian systems and transformations in Hilbert spaces, Proc. Nat. Acad. Sci. U.S.A. 17 (1931), 315-318. | Zbl 0002.05701
[00007] [8] A. Lasota and M. C. Mackey, Globally asymptotic properties of proliferating cell populations, J. Math. Biol. 19 (1984), 43-62. | Zbl 0529.92011
[00008] [9] A. Lasota and M. C. Mackey, Probabilistic Properties of Deterministic Systems, Cambridge University Press, 1985. | Zbl 0606.58002
[00009] [10] A. Lasota and G. Pianigiani, Invariant measures on topological spaces. Boll. Un. Mat. Ital. (5) 14B (1977), 592-603. | Zbl 0372.28019
[00010] [11] A. Lasota, Invariant measures and a linear model of turbulence, Rend. Sem. Mat. Univ. Padova 61 (1979), 39-48. | Zbl 0459.28025
[00011] [12] A. Lasota, Statistical stability of deterministic systems, Lecture Notes in Math. 82, Springer, Berlin 1982, 386-419.
[00012] [13] S. M. Ulam, Problems in Modern Mathematics, Wiley, New York 1964. | Zbl 0137.24201